login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269143
T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally, antidiagonally or vertically adjacent neighbor totalling three no more than once.
8
4, 16, 16, 60, 148, 60, 216, 1164, 1164, 216, 756, 8532, 18556, 8532, 756, 2592, 59916, 275796, 275796, 59916, 2592, 8748, 408596, 3924212, 8317996, 3924212, 408596, 8748, 29160, 2727564, 54199284, 240647068, 240647068, 54199284, 2727564, 29160
OFFSET
1,1
COMMENTS
Table starts
......4........16............60..............216.................756
.....16.......148..........1164.............8532...............59916
.....60......1164.........18556...........275796.............3924212
....216......8532........275796..........8317996...........240647068
....756.....59916.......3924212........240647068.........14197016484
...2592....408596......54199284.......6766301156........815458664276
...8748...2727564.....732561916.....186315931804......45920055321732
..29160..17914580....9740150372....5049212790572....2546667557472940
..96228.116170764..127846717716..135126561336764..139535357045338964
.314928.745617300.1660741102212.3579710280903028.7570570235882777884
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2)
k=2: a(n) = 12*a(n-1) -38*a(n-2) +12*a(n-3) -a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 20] for n>22
k=5: [order 42] for n>45
EXAMPLE
Some solutions for n=3 k=4
..0..3..2..3. .2..0..2..2. .0..0..0..2. .0..3..2..3. .0..2..2..2
..2..3..2..2. .2..0..0..0. .0..0..0..2. .2..3..3..3. .0..0..0..2
..2..2..3..3. .3..1..0..2. .1..1..0..1. .2..2..2..2. .0..2..2..2
CROSSREFS
Column 1 is A120926(n+1).
Sequence in context: A207479 A207535 A269194 * A269109 A269201 A269289
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 20 2016
STATUS
approved