login
A307262
Expansion of Product_{k>=1} (1 + k*x^k/(1 - x)^k).
1
1, 1, 3, 10, 29, 82, 231, 646, 1780, 4835, 13009, 34794, 92600, 245119, 644983, 1686869, 4387030, 11353686, 29261059, 75134965, 192261744, 490305251, 1246128051, 3156425284, 7969135647, 20057905672, 50339682075, 126002008265, 314604617989, 783668652379, 1947689149020
OFFSET
0,3
COMMENTS
First differences of the binomial transform of A022629.
MAPLE
a:=series(mul(1+k*x^k/(1-x)^k, k=1..100), x=0, 31): seq(coeff(a, x, n), n=0..30); # Paolo P. Lava, Apr 03 2019
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 + k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 01 2019
STATUS
approved