%I #8 Apr 03 2019 09:04:21
%S 1,1,3,10,29,82,231,646,1780,4835,13009,34794,92600,245119,644983,
%T 1686869,4387030,11353686,29261059,75134965,192261744,490305251,
%U 1246128051,3156425284,7969135647,20057905672,50339682075,126002008265,314604617989,783668652379,1947689149020
%N Expansion of Product_{k>=1} (1 + k*x^k/(1 - x)^k).
%C First differences of the binomial transform of A022629.
%p a:=series(mul(1+k*x^k/(1-x)^k,k=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # _Paolo P. Lava_, Apr 03 2019
%t nmax = 30; CoefficientList[Series[Product[(1 + k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A022629, A129519, A307259, A307261, A320564.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Apr 01 2019