Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 03 2019 09:04:21
%S 1,1,3,10,29,82,231,646,1780,4835,13009,34794,92600,245119,644983,
%T 1686869,4387030,11353686,29261059,75134965,192261744,490305251,
%U 1246128051,3156425284,7969135647,20057905672,50339682075,126002008265,314604617989,783668652379,1947689149020
%N Expansion of Product_{k>=1} (1 + k*x^k/(1 - x)^k).
%C First differences of the binomial transform of A022629.
%p a:=series(mul(1+k*x^k/(1-x)^k,k=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # _Paolo P. Lava_, Apr 03 2019
%t nmax = 30; CoefficientList[Series[Product[(1 + k x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A022629, A129519, A307259, A307261, A320564.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Apr 01 2019