login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307062
Expansion of 1/(2 - Product_{k>=1} (1 + x^k)^k).
5
1, 1, 3, 10, 29, 88, 264, 790, 2366, 7086, 21216, 63523, 190201, 569485, 1705121, 5105383, 15286247, 45769238, 137039743, 410316854, 1228548190, 3678451550, 11013817655, 32976968175, 98737827756, 295635383297, 885175234817, 2650343093602, 7935511791620, 23760073760720, 71141108467679
OFFSET
0,3
COMMENTS
Invert transform of A026007.
a(n) is the number of compositions of n where there are A026007(k) sorts of part k. - Joerg Arndt, Jan 24 2024
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A026007(k)*a(n-k).
MAPLE
b:= proc(n) b(n):= add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n)) end:
g:= proc(n) g(n):= `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n) end:
a:= proc(n) a(n):= `if`(n=0, 1, add(g(k)*a(n-k), k=1..n)) end:
seq(a(n), n=0..45); # Alois P. Heinz, Jan 24 2024
MATHEMATICA
nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(Magma)
m:=80;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[(1+x^j)^j: j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
(SageMath)
m=80;
def f(x): return 1/( 2 - product((1+x^j)^j for j in range(1, m+3)) )
def A307062_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307062_list(m) # G. C. Greubel, Jan 24 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 21 2019
STATUS
approved