OFFSET
0,3
COMMENTS
Invert transform of A026007.
a(n) is the number of compositions of n where there are A026007(k) sorts of part k. - Joerg Arndt, Jan 24 2024
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A026007(k)*a(n-k).
MAPLE
b:= proc(n) b(n):= add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n)) end:
g:= proc(n) g(n):= `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n) end:
a:= proc(n) a(n):= `if`(n=0, 1, add(g(k)*a(n-k), k=1..n)) end:
seq(a(n), n=0..45); # Alois P. Heinz, Jan 24 2024
MATHEMATICA
nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(Magma)
m:=80;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[(1+x^j)^j: j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
(SageMath)
m=80;
def f(x): return 1/( 2 - product((1+x^j)^j for j in range(1, m+3)) )
def A307062_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307062_list(m) # G. C. Greubel, Jan 24 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 21 2019
STATUS
approved