login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307063
Expansion of 1/(2 - Product_{k>=1} (1 + k*x^k)).
5
1, 1, 3, 10, 28, 85, 252, 745, 2202, 6530, 19326, 57194, 169341, 501242, 1483816, 4392531, 13002772, 38491212, 113943278, 337298400, 998482338, 2955742400, 8749688247, 25901125616, 76673399424, 226971213462, 671887935923, 1988945626648, 5887744768722, 17429103155892, 51594226501776
OFFSET
0,3
COMMENTS
Invert transform of A022629.
a(n) is the number of compositions of n where there are A022629(k) sorts of part k. - Joerg Arndt, Jan 24 2024
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A022629(k)*a(n-k).
MATHEMATICA
nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(Magma)
m:=80;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[(1+j*x^j): j in [1..m+2]])) ));
(SageMath)
m=80;
def f(x): return 1/( 2 - product(1+j*x^j for j in range(1, m+3)) )
def A307063_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307063_list(m) # G. C. Greubel, Jan 24 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 21 2019
STATUS
approved