login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262251
Triangular numbers representable as 2^x + 3^y.
1
3, 10, 28, 91
OFFSET
1,1
COMMENTS
No other terms such that 0 <= x,y < 2000.
No other terms such that 0 <= x,y < 5250. - Michael S. Branicky, Mar 10 2021
EXAMPLE
a(1) = 3 = 2^1 + 3^0.
a(4) = 91 = 2^6 + 3^3.
PROG
(PARI) isok(t) = {for (k=0, logint(t, 2), my(tt = t - 2^k); if (tt, p = valuation(tt, 3); if (tt == 3^p, return(1))); ); }
lista(nn) = for (n=1, nn, if (isok(t=n*(n+1)/2), print1(t, ", "))); \\ Michel Marcus, Sep 20 2015
(PARI) select(x->ispolygonal(x, 3), setbinop(f, [0..20], [0..20])) \\ Michel Marcus, Mar 10 2021
(Python)
from sympy import integer_nthroot
def auptoexponent(maxexp):
sums = set(2**x + 3**y for x in range(maxexp) for y in range(maxexp))
iroots = set(integer_nthroot(2*s, 2)[0] for s in sums)
return sorted(set(r*(r+1)//2 for r in iroots if r*(r+1)//2 in sums))
print(auptoexponent(500)) # Michael S. Branicky, Mar 10 2021
CROSSREFS
Intersection of A000217 and A004050.
Sequence in context: A104574 A307063 A239885 * A246974 A278294 A260811
KEYWORD
nonn,more
AUTHOR
Alex Ratushnyak, Sep 16 2015
STATUS
approved