|
|
A262252
|
|
Even Quasi-Carmichael numbers.
|
|
2
|
|
|
598, 1886, 11590, 21098, 24734, 32578, 91078, 95170, 107606, 134930, 143318, 179998, 253598, 258482, 259010, 287274, 361730, 374402, 568514, 706142, 751394, 831290, 920782, 1074026, 1105646, 1327562, 1514602, 1548318, 1579394, 1742830, 1794854, 1808678, 1952222
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..84
|
|
EXAMPLE
|
598 is even, composite and squarefree and at least one nonzero integer b exists such that for every prime factor p of n, p+b divides n+b (2): 598 = 2*13*23 and 4, 15, 25 all divide 600.
|
|
PROG
|
(PARI) n=0; until(n==1000000, n+=2; if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; b=0; until(b==n, b+=2; c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, k++)); if(k>0, print1(n, ", ")))))
|
|
CROSSREFS
|
Cf. A029562, A029564, A029566, A029568, A029570, A257750.
Sequence in context: A251224 A210384 A215195 * A252265 A029562 A273810
Adjacent sequences: A262249 A262250 A262251 * A262253 A262254 A262255
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Tim Johannes Ohrtmann, Sep 16 2015
|
|
STATUS
|
approved
|
|
|
|