|
|
A029562
|
|
Quasi-Carmichael numbers to base -2: squarefree composites n such that for every prime p that divides n, p+2 divides n+2.
|
|
4
|
|
|
598, 3913, 11590, 32578, 91078, 95170, 154843, 179998, 301273, 317623, 668743, 1742830, 1806673, 2486482, 2517226, 4543423, 5013853, 5237230, 6360523, 6704773, 7342162, 8810503, 10775833, 12858118, 16650478, 18183823, 19230433, 21381358
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Donovan Johnson and Giovanni Resta, Table of n, a(n) for n = 1..600 (terms < 10^12, first 200 terms from Donovan Johnson)
Index entries for sequences related to Carmichael numbers.
|
|
MATHEMATICA
|
qcp[n_, d_] := Block[{p, e}, {p, e} = Transpose@FactorInteger@n;
Length[p] > 1 && Max[e] == 1 && And @@ IntegerQ /@ ((n + d)/(p + d))]; Select[Range[10^6], qcp[#, 2] &] (* Giovanni Resta, May 21 2013 *)
|
|
CROSSREFS
|
Sequence in context: A215195 A262252 A252265 * A273810 A095746 A135846
Adjacent sequences: A029559 A029560 A029561 * A029563 A029564 A029565
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|