The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004050 Numbers of the form 2^j + 3^k, for j and k >= 0. 35
 2, 3, 4, 5, 7, 9, 10, 11, 13, 17, 19, 25, 28, 29, 31, 33, 35, 41, 43, 59, 65, 67, 73, 82, 83, 85, 89, 91, 97, 113, 129, 131, 137, 145, 155, 209, 244, 245, 247, 251, 257, 259, 265, 275, 283, 307, 337, 371, 499, 513, 515, 521, 539, 593, 730, 731, 733, 737, 745, 755 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Donovan Johnson, Table of n, a(n) for n = 1..10000 Douglas Edward Iannucci, On duplicate representations as 2^x+3^y for nonnegative integers x and y, arXiv:1907.03347 [math.NT], 2019. FORMULA There are log^2 x/(log 2 log 3) + O(log x) terms up to x. Bounds on the error term can be made explicit. - Charles R Greathouse IV, Oct 28 2022 MAPLE lincom:=proc(a, b, n) local i, j, s, m; s:={}; for i from 0 to n do for j from 0 to n do m:=a^i+b^j; if m<=n then s:={op(s), m} fi od; od; lprint(sort([op(s)])); end: lincom(2, 3, 760); # Zerinvary Lajos, Feb 24 2007 MATHEMATICA mx = 760; s = Union@ Flatten@ Table[2^i + 3^j, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx - 2^i]}] (* Robert G. Wilson v, Sep 19 2012 *) PROG (Haskell) import Data.Set (singleton, deleteFindMin, insert) a004050 n = a004050_list !! (n-1) a004050_list = f 1 \$ singleton (2, 1, 1) where f x s = if y /= x then y : f y s'' else f x s'' where s'' = insert (u * 2 + v, u * 2, v) \$ insert (u + 3 * v, u, 3 * v) s' ((y, u, v), s') = deleteFindMin s -- Reinhard Zumkeller, May 20 2015 (PARI) ispow2(n)=n>>valuation(N, 2)==1 is(n)=my(k); if(n%2, if(n<3, return(0)); for(k=0, logint(n-2, 3), if(ispow2(n-3^k), return(1))); 0, ispower(n-1, , &k); k==3 || n==2 || n==4) \\ Charles R Greathouse IV, Aug 29 2016 (Python) def aupto(lim): s, pow3 = set(), 1 while pow3 < lim: for j in range((lim-pow3).bit_length()): s.add(2**j + pow3) pow3 *= 3 return sorted(set(s)) print(aupto(756)) # Michael S. Branicky, Jul 29 2021 CROSSREFS Cf. A085634, A219835. Cf. A226806-A226832 (cases to 8^j + 9^k). Cf. A004051 (primes), A000079, A000243. Sequence in context: A160718 A122090 A066050 * A123538 A092999 A077154 Adjacent sequences: A004047 A004048 A004049 * A004051 A004052 A004053 KEYWORD nonn AUTHOR N. J. A. Sloane EXTENSIONS More terms from Sascha Kurz, Jan 02 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)