login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004050
Numbers of the form 2^j + 3^k, for j and k >= 0.
35
2, 3, 4, 5, 7, 9, 10, 11, 13, 17, 19, 25, 28, 29, 31, 33, 35, 41, 43, 59, 65, 67, 73, 82, 83, 85, 89, 91, 97, 113, 129, 131, 137, 145, 155, 209, 244, 245, 247, 251, 257, 259, 265, 275, 283, 307, 337, 371, 499, 513, 515, 521, 539, 593, 730, 731, 733, 737, 745, 755
OFFSET
1,1
LINKS
Douglas Edward Iannucci, On duplicate representations as 2^x+3^y for nonnegative integers x and y, arXiv:1907.03347 [math.NT], 2019.
FORMULA
There are log^2 x/(log 2 log 3) + O(log x) terms up to x. Bounds on the error term can be made explicit. - Charles R Greathouse IV, Oct 28 2022
MAPLE
lincom:=proc(a, b, n) local i, j, s, m; s:={}; for i from 0 to n do for j from 0 to n do m:=a^i+b^j; if m<=n then s:={op(s), m} fi od; od; lprint(sort([op(s)])); end: lincom(2, 3, 760); # Zerinvary Lajos, Feb 24 2007
MATHEMATICA
mx = 760; s = Union@ Flatten@ Table[2^i + 3^j, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx - 2^i]}] (* Robert G. Wilson v, Sep 19 2012 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a004050 n = a004050_list !! (n-1)
a004050_list = f 1 $ singleton (2, 1, 1) where
f x s = if y /= x then y : f y s'' else f x s''
where s'' = insert (u * 2 + v, u * 2, v) $
insert (u + 3 * v, u, 3 * v) s'
((y, u, v), s') = deleteFindMin s
-- Reinhard Zumkeller, May 20 2015
(PARI) ispow2(n)=n>>valuation(N, 2)==1
is(n)=my(k); if(n%2, if(n<3, return(0)); for(k=0, logint(n-2, 3), if(ispow2(n-3^k), return(1))); 0, ispower(n-1, , &k); k==3 || n==2 || n==4) \\ Charles R Greathouse IV, Aug 29 2016
(Python)
def aupto(lim):
s, pow3 = set(), 1
while pow3 < lim:
for j in range((lim-pow3).bit_length()):
s.add(2**j + pow3)
pow3 *= 3
return sorted(set(s))
print(aupto(756)) # Michael S. Branicky, Jul 29 2021
CROSSREFS
Cf. A226806-A226832 (cases to 8^j + 9^k).
Cf. A004051 (primes), A000079, A000243.
Sequence in context: A160718 A122090 A066050 * A123538 A092999 A077154
KEYWORD
nonn
EXTENSIONS
More terms from Sascha Kurz, Jan 02 2003
STATUS
approved