login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219835
Number of terms of 2^j + 3^k <= 10^n.
2
7, 29, 64, 118, 181, 254, 354, 453, 565, 708, 878, 1033, 1224, 1403, 1594, 1828, 2046, 2274, 2553, 2808, 3139, 3467, 3765, 4073, 4443, 4779, 5124, 5537, 5911, 6294, 6690, 7266, 7693, 8129, 8650, 9114, 9588, 10153, 10654, 11167, 11776, 12449, 13005, 13662, 14243
OFFSET
1,1
COMMENTS
As n-> infinity, a(n) -> log_2(n)*log_3(n).
MATHEMATICA
Join[{7, 29}, Table[m = 10^x; -4 + Floor [ Log[3, m ]] + Sum[Floor @ Log[2, m - 3^i], {i, 0, Log[3, m]}], {x, 3, 100}]]
PROG
(Python)
def a(n):
s, pow3, lim = set(), 1, 10**n
while pow3 < lim:
for j in range((lim-pow3).bit_length()):
s.add(2**j + pow3)
pow3 *= 3
return len(s)
print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Jul 29 2021
CROSSREFS
Cf. A004050 (numbers of the form 2^j + 3^k).
Sequence in context: A005698 A080185 A355920 * A041621 A022272 A185438
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 29 2012
STATUS
approved