login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041621
Denominators of continued fraction convergents to sqrt(329).
2
1, 7, 29, 65, 94, 159, 730, 889, 1619, 4127, 18127, 131016, 4734703, 33273937, 137830451, 308934839, 446765290, 755700129, 3469565806, 4225265935, 7694831741, 19614929417, 86154549409, 622696775280, 22503238459489, 158145365991703, 655084702426301
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4752830, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f. (1 +7*x +29*x^2 +65*x^3 +94*x^4 +159*x^5 +730*x^6 +889*x^7 +1619*x^8 +4127*x^9 +18127*x^10 +131016*x^11 -18127*x^12 +4127*x^13 -1619*x^14 +889*x^15 -730*x^16 +159*x^17 -94*x^18 +65*x^19 -29*x^20 +7*x^21 -x^22)/(1 -4752830*x^12 +x^24). - Vincenzo Librandi, Dec 22 2013
a(n) = 4752830*a(n-12) - a(n-24) for n>23. - Vincenzo Librandi, Dec 22 2013
MATHEMATICA
Denominator[Convergents[Sqrt[329], 30]] (* or *) CoefficientList[Series[(1 + 7 x + 29 x^2 + 65 x^3 + 94 x^4 + 159 x^5 + 730 x^6 + 889 x^7 + 1619 x^8 + 4127 x^9 + 18127 x^10 + 131016 x^11 - 18127 x^12 + 4127 x^13 - 1619 x^14 + 889 x^15 - 730 x^16 + 159 x^17 - 94 x^18 + 65 x^19 - 29 x^20 + 7 x^21 - x^22)/(1 - 4752830 x^12 + x^24), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 22 2013 *)
PROG
(Magma) I:= 1, 7, 29, 65, 94, 159, 730, 889, 1619, 4127, 18127, 131016, 4734703, 33273937, 137830451, 308934839, 446765290, 755700129, 3469565806, 4225265935, 7694831741, 19614929417, 86154549409, 622696775280]; [n le 24 select I[n] else 4752830*Self(n-12)-Self(n-24): n in [1..40]]; // Vincenzo Librandi, Dec 22 2013
CROSSREFS
Cf. A041620.
Sequence in context: A080185 A355920 A219835 * A022272 A185438 A265803
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Dec 22 2013
STATUS
approved