OFFSET
0,3
COMMENTS
Invert transform of A006906.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1/(1 - Sum_{k>=1} k*x^k / Product_{j=1..k} (1 - j*x^j)).
a(0) = 1; a(n) = Sum_{k=1..n} A006906(k)*a(n-k).
MAPLE
a:=series(1/(2-mul(1/(1-k*x^k), k=1..100)), x=0, 29): seq(coeff(a, x, n), n=0..28); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 28; CoefficientList[Series[1/(2 - Product[1/(1 - k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 28; CoefficientList[Series[1/(1 - Sum[k x^k/Product[(1 - j x^j), {j, 1, k}], {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Total[Times@@@IntegerPartitions[k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 28}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 18 2018
STATUS
approved