login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320651
Expansion of 1/(1 - Sum_{k>=1} k*x^k/(1 + x^k)).
2
1, 1, 2, 7, 14, 36, 90, 213, 520, 1271, 3082, 7493, 18238, 44324, 107782, 262142, 637368, 1549870, 3768886, 9164499, 22285034, 54190024, 131771616, 320424614, 779166270, 1894671121, 4607207304, 11203190618, 27242414612, 66244451632, 161084380040, 391703392954
OFFSET
0,3
COMMENTS
Invert transform of A000593.
LINKS
FORMULA
G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k))).
G.f.: 24/(25 - theta_2(x)^4 - theta_3(x)^4), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A000593(k)*a(n-k).
MAPLE
a:=series(1/(1-add(k*x^k/(1+x^k), k=1..100)), x=0, 32): seq(coeff(a, x, n), n=0..31); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 31; CoefficientList[Series[1/(1 - Sum[k x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 31; CoefficientList[Series[24/(25 - EllipticTheta[2, 0, x]^4 - EllipticTheta[3, 0, x]^4), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 31}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 18 2018
STATUS
approved