login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180305 G.f.: 1/(1 + x*d/dx log(eta(x))), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor. 0
1, 1, 4, 11, 34, 96, 288, 833, 2456, 7175, 21054, 61633, 180674, 529220, 1550800, 4543446, 13312552, 39004278, 114281748, 334837511, 981059294, 2874447292, 8421986238, 24675963950, 72299290794, 211833080161, 620659794584, 1818500391218, 5328110328116, 15611082044176, 45739647180588, 134014753120706, 392656158141832 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..32.

FORMULA

a(n) = Sum_{k=0,n-1} sigma(n-k)*a(k) for n>0 with a(0) = 1.

G.f.: 1/(1 - sum(k>=1, x^k/(1-x^k)^2)). [Joerg Arndt, Mar 09 2014]

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 11*x^3 + 34*x^4 + 96*x^5 + 288*x^6 +...

eta(x)^3/A(x) = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 + 104*x^21 +...+ A184363(n)*x^n +...

1 + x*d/dx log(eta(x)) = 1 - x - 3*x^2 - 4*x^3 - 7*x^4 - 6*x^5 - 12*x^6 - 8*x^7 - 15*x^8 +...+ -sigma(n)*x^n +...

PROG

(PARI) {a(n)=polcoeff(1/(1+x*deriv(log(eta(x+x*O(x^n))))), n)}

(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, sigma(n-k)*a(k)))}

(PARI) N=66; x='x+O('x^N); Vec(1/(1 - sum(k=1, N, x^k/(1-x^k)^2))) \\ Joerg Arndt, Mar 09 2014

CROSSREFS

Cf. A184363, A000203, A000041.

Sequence in context: A062460 A098324 A144791 * A060925 A027045 A243781

Adjacent sequences:  A180302 A180303 A180304 * A180306 A180307 A180308

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 10:37 EDT 2015. Contains 261188 sequences.