login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180305
G.f.: 1/(1 + x*d/dx log(eta(x))), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.
17
1, 1, 4, 11, 34, 96, 288, 833, 2456, 7175, 21054, 61633, 180674, 529220, 1550800, 4543446, 13312552, 39004278, 114281748, 334837511, 981059294, 2874447292, 8421986238, 24675963950, 72299290794, 211833080161, 620659794584, 1818500391218, 5328110328116, 15611082044176, 45739647180588, 134014753120706, 392656158141832
OFFSET
0,3
COMMENTS
INVERT transform of sigma (A000203). - Alois P. Heinz, Feb 11 2021
LINKS
FORMULA
a(n) = Sum_{k=0,n-1} sigma(n-k)*a(k) for n>0 with a(0) = 1.
G.f.: 1/(1 - sum(k>=1, x^k/(1-x^k)^2)). [Joerg Arndt, Mar 09 2014]
a(n) ~ c * d^n, where d = 2.92994725111235280869138453465150817383965264075630759525007993985560038385... is the root of the equation Sum_{k>=1} sigma(k)/d^k = 1 and c = 0.45133473613134383104139698267531812019856702278773719486399141396046228911... - Vaclav Kotesovec, Jul 28 2018
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 11*x^3 + 34*x^4 + 96*x^5 + 288*x^6 +...
eta(x)^3/A(x) = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 + 104*x^21 +...+ A184363(n)*x^n +...
1 + x*d/dx log(eta(x)) = 1 - x - 3*x^2 - 4*x^3 - 7*x^4 - 6*x^5 - 12*x^6 - 8*x^7 - 15*x^8 +...+ -sigma(n)*x^n +...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*numtheory[sigma](i), i=1..n))
end:
seq(a(n), n=0..36); # Alois P. Heinz, Feb 11 2021
MATHEMATICA
nmax = 50; CoefficientList[Series[1/(1 - Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 06 2017 *)
PROG
(PARI) {a(n)=polcoeff(1/(1+x*deriv(log(eta(x+x*O(x^n))))), n)}
(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, sigma(n-k)*a(k)))}
(PARI) N=66; x='x+O('x^N); Vec(1/(1 - sum(k=1, N, x^k/(1-x^k)^2))) \\ Joerg Arndt, Mar 09 2014
CROSSREFS
Row sums of A319083.
Sequence in context: A098324 A327548 A144791 * A060925 A027045 A243781
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 18 2011
STATUS
approved