The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184363 G.f.: eta(x)^3*(1 + x*eta'(x)/eta(x)), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor. 3
 1, -4, 0, 10, 0, 0, -21, 0, 0, 0, 39, 0, 0, 0, 0, -66, 0, 0, 0, 0, 0, 104, 0, 0, 0, 0, 0, 0, -155, 0, 0, 0, 0, 0, 0, 0, 221, 0, 0, 0, 0, 0, 0, 0, 0, -304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 406, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -529, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 675, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -846 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f.: A(x) = Sum_{n>=0} (-1)^n*(2n+1)*(n^2+n+6)/6 * x^(n(n+1)/2). G.f.: A(x) = eta(x)^2*G(x) where G(x) is the g.f. of A184362. EXAMPLE G.f.: A(x) = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 +... A(x) = eta(x)^3*[1 + x*d/dx log(eta(x))] where eta(x)^3 = 1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 +...+ (-1)^n*(2n+1)*x^(n(n+1)/2) +... 1 + x*d/dx log(eta(x)) = 1 - x - 3*x^2 - 4*x^3 - 7*x^4 - 6*x^5 - 12*x^6 - 8*x^7 - 15*x^8 +...+ -sigma(n)*x^n +... PROG (PARI) {a(n)=polcoeff(sum(m=0, n, (-1)^m*(2*m+1)*(m^2+m+6)/6*x^(m*(m+1)/2)), n)} (PARI) {a(n)=polcoeff(eta(x+x*O(x^n))^3*(1+x*deriv(log(eta(x+x*O(x^n))))), n)} CROSSREFS Cf. A184362, A184366. Sequence in context: A330386 A098487 A174381 * A331451 A164735 A293933 Adjacent sequences:  A184360 A184361 A184362 * A184364 A184365 A184366 KEYWORD sign AUTHOR Paul D. Hanna, Jan 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 16:50 EDT 2021. Contains 347487 sequences. (Running on oeis4.)