login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A184362
G.f.: eta(x) + x*eta'(x).
3
1, -2, -3, 0, 0, 6, 0, 8, 0, 0, 0, 0, -13, 0, 0, -16, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, -36, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 0, 0, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -71, 0, 0, 0, 0, 0, 0, -78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 0, 0
OFFSET
0,2
COMMENTS
The formulas specified in this entry use eta(x) to denote Dedekind's eta(q) function without the q^(1/24) factor.
FORMULA
G.f. A(x) satisfies:
(1) [x^n] A(x)/eta(x)^(n+1) = 0 for n>=1.
(2) [x^n] A(x)/eta(x)^n = A109084(n) for n>=0.
(3) [x^n] A(x)/eta(x)^(n+2) = A109085(n) for n>=0.
(4) A(x)/eta(x) = 1 - Sum_{n>=1} sigma(n)*x^n.
(5) A(x) = 1 + Sum_{n>=1} (-1)^n*[n(3n-1)/2+1 + (n(3n+1)/2+1)*x^n)] * x^(n(3n-1)/2).
(6) A(x)*eta(x)^2 = Sum_{n>=0} (-1)^n*(2n+1)*(n^2+n+6)/6*x^(n(n+1)/2).
EXAMPLE
G.f.: A(x) = 1 - 2*x - 3*x^2 + 6*x^5 + 8*x^7 - 13*x^12 - 16*x^15 + 23*x^22 + 27*x^26 - 36*x^35 - 41*x^40 +...
Illustrate the property: [x^n] A(x)/eta(x)^(n+1) = 0
in the table of coefficients of A(x)/eta(x)^(n+1) for n=0..10:
[1, -1, -3, -4, -7, -6, -12, -8, -15, -13, -18,...,-sigma(n),...];
[1,(0), -2, -6, -15, -28, -55, -90, -154, -240, -378,...];
[1, 1,(0), -5, -20, -54, -130, -275, -555, -1050, -1924,...];
[1, 2, 3,(0), -17, -72, -221, -572, -1350, -2958, -6160,...];
[1, 3, 7, 10,(0), -63, -287, -930, -2580, -6475, -15162,...];
[1, 4, 12, 26, 38,(0), -253, -1196, -4059, -11780, -31027,...];
[1, 5, 18, 49, 105, 153,(0), -1062, -5175, -18140, -54544,...];
[1, 6, 25, 80, 210, 442, 646,(0), -4615, -22990, -82671,...];
[1, 7, 33, 120, 363, 924, 1926, 2816,(0), -20570, -104285,...];
[1, 8, 42, 170, 575, 1668, 4161, 8602, 12585,(0), -93538,...];
[1, 9, 52, 231, 858, 2756, 7766, 19071, 39182, 57343,(0),...]; ...
so that the coefficient of x^n in A(x)/eta(x)^(n+1) is zero for n>=1.
Note: the g.f.s of the diagonals in the above table are powers of G(x),
where G(x) = 1/eta(x*G(x)) is the g.f. of A109085.
The g.f. of A184363 equals:
A(x)*eta(x)^2 = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 +...+ (-1)^n*(2n+1)*(n^2+n+6)/6*x^(n(n+1)/2) +...
PROG
(PARI) {a(n)=polcoeff(eta(x+x*O(x^n)) + x*deriv(eta(x+x*O(x^n))), n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 18 2011
EXTENSIONS
Example of g.f. corrected by Paul D. Hanna, Jan 18 2011
Name changed slightly by Paul D. Hanna, Nov 27 2012
STATUS
approved