login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184359
Recurrence: Sum_{n>=0} a(n-k)*a(k) = (n+1)!^2/2^n.
2
1, 1, 4, 32, 410, 7562, 188736, 6118296, 249991926, 12575954918, 764125698224, 55189878377480, 4674557178309388, 458942541226822876, 51705551381013381112, 6626012145599584408536, 958371653002293850802814
OFFSET
0,3
FORMULA
Self-convolution equals A184358.
G.f. satisfies: A(x) = F(x*A(x)^2) where A(x/F(x)^2) = F(x) is the g.f. of A184361.
G.f.: A(x) = sqrt((1/x)*Series_Reversion(x/F(x)^2)) where F(x) is the g.f. of A184361.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 410*x^4 + 7562*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 72*x^3 + 900*x^4 + 16200*x^5 + 396900*x^6 +...+ (n+1)!^2*x^n/2^n +...
The g.f. of A184361 is F(x) = A(x/F(x)^2):
F(x) = 1 + x + 2*x^2 + 15*x^3 + 204*x^4 + 4085*x^5 + 110128*x^6 +...
PROG
(PARI) {a(n)=local(G=sum(m=0, n, (m+1)!^2*x^m/2^m)+x*O(x^n)); polcoeff(sqrt(G), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 16 2011
STATUS
approved