The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317677 Fixed point of a shifted hypertree transform. 5
 1, 1, 4, 32, 402, 7038, 160114, 4522578, 153640590, 6132546770, 282517271694, 14812447505646, 873934551644074, 57486823088667270, 4183353479821220130, 334572221351085006242, 29242220614539638127294, 2779426070382982579163202, 286058737295150226682469518 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The hypertree transform H(a) of a sequence a is given by H(a)(n) = Sum_p n^(k-1) Prod_i a(|p_i|+1), where the sum is over all set partitions U(p_1, ..., p_k) = {1, ..., n-1}. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..305 MAPLE b:= proc(n, k) option remember; `if`(n=0, 1/k, add(       a(j)*b(n-j, k)*binomial(n-1, j-1)*k, j=1..n))     end: a:= n-> b(n-1, n): seq(a(n), n=1..20);  # Alois P. Heinz, Aug 21 2019 MATHEMATICA numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn]; a[n_]:=a[n]=Sum[n^(Length[ptn]-1)*numSetPtnsOfType[ptn]*Product[a[s], {s, ptn}], {ptn, IntegerPartitions[n-1]}]; Array[a, 20] (* Second program: *) b[n_, k_] := b[n, k] = If[n == 0, 1/k, Sum[      a[j]*b[n - j, k]*Binomial[n - 1, j - 1]*k, {j, 1, n}]]; a[n_] := b[n - 1, n]; Array[a, 20] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *) CROSSREFS Cf. A000272, A030019, A048143, A134954, A275307, A293510, A317631, A317632, A317634, A317635, A317671. Sequence in context: A127670 A317403 A243468 * A191459 A184359 A229548 Adjacent sequences:  A317674 A317675 A317676 * A317678 A317679 A317680 KEYWORD nonn,eigen AUTHOR Gus Wiseman, Aug 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 19:02 EDT 2021. Contains 345068 sequences. (Running on oeis4.)