login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317671
Regular triangle where T(n,k) is the number of labeled connected graphs on n + 1 vertices with k maximal blobs (2-connected components).
3
1, 1, 3, 10, 12, 16, 238, 215, 150, 125, 11368, 7740, 4140, 2160, 1296, 1014888, 509446, 205065, 84035, 36015, 16807, 166537616, 59409952, 17393152, 5393920, 1863680, 688128, 262144, 50680432112, 12321597708, 2516756508, 563570217, 148803480, 45467730
OFFSET
1,3
EXAMPLE
Triangle begins:
1
1 3
10 12 16
238 215 150 125
11368 7740 4140 2160 1296
1014888 509446 205065 84035 36015 16807
MATHEMATICA
blg={0, 1, 1, 10, 238, 11368, 1014888, 166537616, 50680432112, 29107809374336} (*A013922*);
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]], {s, spn}], {spn, Select[sps[Range[n-1]], Length[#]==k&]}], {n, Length[blg]}, {k, n-1}]
CROSSREFS
Row sums are A001187. First column is A013922. Last column is A000272.
Sequence in context: A343892 A358892 A358893 * A031453 A345961 A179203
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved