login
A317632
Number of connected induced nonempty non-singleton subgraphs of labeled connected graphs with n vertices.
10
0, 0, 1, 13, 294, 12198, 946712, 140168924, 40223263760, 22598607583376, 24999757695984960, 54630901092648916704, 236304498092496715916416, 2026201628540583716863002880, 34482826679730591694177065948928, 1166004710785628820717860509317415168
OFFSET
0,4
COMMENTS
The edges of an induced subgraph G|S are those edges of G with both ends contained in S, where S is a subset of the vertices.
PROG
(PARI)
seq(n)={
my(p=sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n)));
my(g=Vec(serlaplace(log(p))));
my(q=sum(k=0, n, sum(j=2, k, binomial(k, j)*g[j]*2^(binomial(k-j, 2) + j*(k-j)))*x^k/k!, O(x*x^n)));
Vec(serlaplace(q/p), -n-1)
} \\ Andrew Howroyd, Dec 10 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 02 2018
EXTENSIONS
a(6) from Gus Wiseman, Dec 10 2018
Terms a(7) and beyond from Andrew Howroyd, Dec 10 2018
STATUS
approved