login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184358
a(n) = (n+1)!^2/2^n.
3
1, 2, 9, 72, 900, 16200, 396900, 12700800, 514382400, 25719120000, 1556006760000, 112032486720000, 9466745127840000, 927741022528320000, 104370865034436000000, 13359470724407808000000, 1930443519676928256000000, 312731850187662377472000000
OFFSET
0,2
COMMENTS
Self-convolution of A184359.
FORMULA
From Amiram Eldar, Jun 25 2022: (Start)
Sum_{n>=0} 1/a(n) = (BesselI(0, 2*sqrt(2)) - 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (1 - BesselJ(0, 2*sqrt(2)))/2. (End)
EXAMPLE
G.f.: A(x) = 1 + 2*x + 9*x^2 + 72*x^3 + 900*x^4 + 16200*x^5 +...
A(x)^(1/2) = 1 + x + 4*x^2 + 32*x^3 + 410*x^4 + 7562*x^5 + 188736*x^6 +...+ A184359(n)*x^n +...
MATHEMATICA
a[n_] := (n + 1)!^2/2^n; Array[a, 20, 0] (* Amiram Eldar, Jun 25 2022 *)
PROG
(PARI) {a(n)=(n+1)!^2/2^n}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 16 2011
STATUS
approved