login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)!^2/2^n.
3

%I #10 Jun 25 2022 08:25:28

%S 1,2,9,72,900,16200,396900,12700800,514382400,25719120000,

%T 1556006760000,112032486720000,9466745127840000,927741022528320000,

%U 104370865034436000000,13359470724407808000000,1930443519676928256000000,312731850187662377472000000

%N a(n) = (n+1)!^2/2^n.

%C Self-convolution of A184359.

%F From _Amiram Eldar_, Jun 25 2022: (Start)

%F Sum_{n>=0} 1/a(n) = (BesselI(0, 2*sqrt(2)) - 1)/2.

%F Sum_{n>=0} (-1)^n/a(n) = (1 - BesselJ(0, 2*sqrt(2)))/2. (End)

%e G.f.: A(x) = 1 + 2*x + 9*x^2 + 72*x^3 + 900*x^4 + 16200*x^5 +...

%e A(x)^(1/2) = 1 + x + 4*x^2 + 32*x^3 + 410*x^4 + 7562*x^5 + 188736*x^6 +...+ A184359(n)*x^n +...

%t a[n_] := (n + 1)!^2/2^n; Array[a, 20, 0] (* _Amiram Eldar_, Jun 25 2022 *)

%o (PARI) {a(n)=(n+1)!^2/2^n}

%Y Cf. A184359, A184360, A184361, A006472.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 16 2011