login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133984
E.g.f. satisfies: A(x) = x*(tan(exp(A(x))-1)+1).
1
0, 1, 2, 9, 72, 845, 12972, 244741, 5468176, 141111693, 4129615540, 135127313101, 4888457921688, 193733261456605, 8346805786382364, 388432439875807125, 19417284993350451232, 1037672210204182995277, 59035412382992193993732
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n^(n-1) * sqrt(r*s/(r+2*exp(s)*(s-r))) / (exp(n) * r^n), where r = 0.2898872767597687473... and s = 0.5719846912143595905... are roots of the system of equations s+r*tan(1-exp(s)) = r, exp(s)*r = (cos(1-exp(s)))^2. - Vaclav Kotesovec, Jul 16 2014
MAPLE
A:= proc(n) option remember; if n=0 then 0 else convert (series (x* (tan (exp(A(n-1))-1)+1), x=0, n+1), polynom) fi end: a:= n-> coeff (A(n), x, n)*n!: seq (a(n), n=0..22);
MATHEMATICA
CoefficientList[InverseSeries[Series[-(x/(-1 + Tan[1 - E^x])), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 16 2014 *)
CROSSREFS
Sequence in context: A133941 A240956 A038035 * A208898 A108995 A184358
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2008
STATUS
approved