login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240956
G.f.: Sum_{n>=0} n^n * x^n * (2 + n*x)^n / (1 + n*x)^(2*n+2).
4
1, 2, 9, 72, 830, 12420, 228060, 4959360, 124589304, 3550050000, 113116311000, 3985174226880, 153815533185600, 6454433029524480, 292557975636326400, 14244829479956275200, 741502151945703308160, 41092028680670274827520, 2415394879269218890243200
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..[n/2]} (n-k)! * Stirling2(n, n-k) * binomial(n-k, k) * 2^(n-2*k).
a(n) ~ c * d^n * n! / sqrt(n), where d = 2*r^2/(2*r-1) + (2*r-1)*r/(2*(1-r)) = 3.36074272900128370245729732045120604190737486342012..., where r = 0.80276231206743119172295651485200150958072822575039811732... is the root of the equation (r + (1-2*r)^2/(4*(1-r))) * LambertW(-exp(-1/r)/r) = -1, and c = 0.533888836381702228067397487907088688592161798613354080016... . - Vaclav Kotesovec, Aug 05 2014
EXAMPLE
O.g.f.: A(x) = 1 + 2*x + 9*x^2 + 72*x^3 + 830*x^4 + 12420*x^5 + 228060*x^6 +...
where
A(x) = 1 + x*(2+x)/(1+x)^4 + 2^2*x^2*(2+2*x)^2/(1+2*x)^6 + 3^3*x^3*(2+3*x)^3/(1+3*x)^8 + 4^4*x^4*(2+4*x)^4/(1+4*x)^10 + 5^5*x^5*(2+5*x)^5/(1+5*x)^12 +...
MATHEMATICA
Table[Sum[(n-k)! * StirlingS2[n, n-k] * Binomial[n-k, k] * 2^(n-2*k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 05 2014 *)
PROG
(PARI) {a(n)=local(A=1); A=sum(m=0, n, m^m*x^m*(2+m*x)^m/(1 + m*x +x*O(x^n))^(2*m+2)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From formula for a(n): */
{Stirling2(n, k)=sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!}
{a(n)=sum(k=0, n\2, (n-k)!*Stirling2(n, n-k)*binomial(n-k, k)*2^(n-2*k) )}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A370889 A367485 A133941 * A038035 A133984 A208898
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 04 2014
STATUS
approved