OFFSET
1,3
COMMENTS
Here, a k-colored digraph is a digraph whose labels are colored with exactly k colors so that no two adjacent vertices have the same color.
LINKS
Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019.
FORMULA
T(n,k)= n!*2^(n^2)*[x^n] (A(x) - 1)^k where A(x)=Sum{n>=0}x^n/(n!*2^(n^2)).
T(n,n)= n!*2^(n^2-n).
EXAMPLE
1,
1, 8,
1, 96, 384,
1, 2048, 36864, 98304,
1, 84480, 6881280, 62914560, 125829120,
1, 7221248, 3043491840, 80530636800, 483183820800, 773094113280
T(2,2)=8 because there are 4 directed graphs on 4 labeled nodes and each is counted two times. 4*2=8.
MATHEMATICA
nn=10; f[x_]:=Sum[x^n/(n!*2^(2*Binomial[n, 2])), {n, 0, nn}]; Map[Select[#, #>0&]&, Drop[Transpose[Table[Table[n!*2^(2*Binomial[n, 2]), {n, 0, nn}]CoefficientList[Series[(f[x]-1)^k, {x, 0, nn}], x], {k, 1, nn}]], 1]]//Grid
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Aug 04 2014
STATUS
approved