login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254933
Triangle used for the integral of even powers of the sine and cosine functions.
2
-1, -8, 1, -90, 18, -2, -1344, 336, -64, 6, -25200, 7200, -1800, 300, -24, -570240, 178200, -52800, 11880, -1728, 120, -15135120, 5045040, -1681680, 458640, -91728, 11760, -720, -461260800, 161441280, -58705920, 18345600, -4515840, 806400, -92160, 5040, -15878903040, 5774146560, -2245501440, 777288960, -222082560, 49351680, -7931520, 816480, -40320
OFFSET
1,2
COMMENTS
This entry originated from a proposal by Ozgur Cem Birler for the integral of the fourth power of sin(x). Peter Bala suggested the use of this triangle to cover all even powers.
The signed triangle T(n, k) appears in the formula
2^(2*n)*n!*int(sin^{2*n}x dx) = (2*n)!/n!*x + Sum {k = 1..n} T(n, k)*sin(2*k*x), n >= 1.
See the Gradstein - Ryshik reference, 2.513 1., p. 168, (after changing the summation variable k -> n - k).
The unsigned triangle T(n, k) appears in the formula 2^(2*n)*n!*int(cos^{2*n}x dx) = (2*n)!/n!*x + Sum {k = 1..n} |T(n, k)|*sin(2*k*x), n >= 1.
See the Gradstein - Ryshik reference, 2.513 3., p. 168.
For the integral of odd powers of sine and cosine see A254932.
Let f_n(x) := Sum_{k=1..n} -T(n, k) * sin(k*x). Then f_n(x) = x + O(x^(2*n+1)). - Michael Somos, Jun 07 2019
REFERENCES
I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
FORMULA
T(n, k) = (-1)^k*n!/k*binomial(2*n,n - k), 1 <= k <= n.
EXAMPLE
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 ...
1: -1
2: -8 1
3: -90 18 -2
4: -1344 336 -64 6
5: -25200 7200 -1800 300 -24
6: -570240 178200 -52800 11880 -1728 120
...
For more rows see the link.
n=3: 2^6*3!*int((sin x)^6 dx) = 120*x - 90*sin(2*x) + 18*sin(4*x) - 2*sin(*x),
that is: int((sin x)^6 dx) = (5/16)*x -(15/64)*sin(2*x) + (3/64)*sin(4*x) - (1/192)*sin(6*x).
2^6*3!*int((cos x)^6 dx) = 120*x + 90*sin(2*x) + 18*sin(4*x) + 2*sin(6*x),
that is: int((cos x)^6 dx) = (5/16)*x + (15/64)*sin(2*x) + (3/64)*sin(4*x) + (1/192)*sin(6*x).
As defined in my comment: f_1(x) = sin(x) = x - x^3/6 + O(x^5), f_2(x) = (8*sin(x) - sin(2x)/6 = x - x^5/30 + O(x^7), f_3(x) = (90*sin(x) - 18*sin(2x) + 2*sin(3))/60 = x - x^7/140 + O(x^9). - Michael Somos, Jun 07 2019
MATHEMATICA
T[n_, k_] := (-1)^k*n!/k*Binomial[2*n, n-k]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 18 2015 *)
PROG
(PARI) {T(n, k) = if( n<1 || n>k, 0, (-1)^k*n!/k*binomial(2*n, n-k))}; /* Michael Somos, Jun 07 2019 */
CROSSREFS
Cf. A254932 (odd powers).
Sequence in context: A143499 A114152 A347111 * A174503 A048786 A240955
KEYWORD
sign,tabl,easy
AUTHOR
Wolfdieter Lang, Feb 16 2015
STATUS
approved