login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254931
Fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = A001132(n), n >= 1, (primes congruent to 1 or 7 mod 8).
3
3, 4, 7, 5, 8, 11, 7, 12, 15, 10, 8, 13, 16, 9, 14, 17, 23, 13, 18, 11, 27, 14, 19, 12, 22, 17, 25, 28, 23, 18, 14, 32, 35, 19, 17, 22, 30, 25, 36, 39, 16, 28, 23, 31, 21, 19, 40, 20, 18, 38
OFFSET
1,1
COMMENTS
The corresponding terms x = x2(n) are given in A254930(n).
The y2-sequence for the second class for the primes congruent to 1 (mod 8), which are given in A007519, is 2*A254763. For the primes congruent to 7 (mod 8), given in A007522, the y2-sequence is A254929.
For comments and the Nagell reference see A254760.
FORMULA
A254930(n)^2 - 2*a(n)^2 = A001132(n), and a(n) is the second largest (proper) positive integer satisfying this (generalized) Pell equation.
a(n) = 2*A002334(n+1) - 3*A002335(n+1), n >= 1.
EXAMPLE
a(4) = 2*7 - 3*3 = 5.
A254930(4)^2 - 2*a(4)^2 = 9^2 - 2*5^2 = 31 = A001132(4) = A007522(3).
See A254930 for the first pairs (x2(n), y2(n)).
MATHEMATICA
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[MatchQ[Mod[p, 8], 1|7], rp = Reduce[x > 0 && y > 0 && x^2 - 2 y^2 == p, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; y2 = xy[[-1, 2]] // Simplify; Print[y2]; Sow[y2]]]]][[2, 1]] (* Jean-François Alcover, Oct 28 2019 *)
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 12 2015
STATUS
approved