The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002335 Least positive integer y such that A038873(n) = x^2 - 2y^2 for some x. (Formerly M0139 N0055) 7
 1, 1, 2, 1, 3, 2, 1, 5, 2, 1, 4, 6, 3, 2, 7, 4, 3, 1, 7, 4, 9, 1, 8, 5, 10, 4, 7, 3, 2, 5, 8, 12, 2, 1, 9, 11, 8, 4, 7, 2, 1, 14, 6, 9, 5, 11, 13, 2, 14, 16, 4, 11, 8, 3, 2, 7, 10, 17, 12, 11, 1, 7, 13, 10, 6, 4, 3, 1, 16, 7, 20, 13, 5, 15, 4, 12, 2, 21, 14, 11, 7, 16, 13, 18, 5, 20, 9, 1, 8, 17, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A prime p is representable in the form x^2-2y^2 iff p is 2 or p == 1 or 7 mod 8. - Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005 REFERENCES A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1. D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Robert Israel, Table of n, a(n) for n = 1..10000 A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904 [Annotated scans of selected pages] MAPLE with(numtheory): readlib(issqr):for i from 1 to 300 do p:=ithprime(i): pmod8:=modp(p, 8): if p=2 or pmod8=1 or pmod8=7 then for y from 1 do if issqr(p+2*y^2) then printf("%d, ", y): break fi od fi od: # Pab Ter, Oct 22 2005 MATHEMATICA maxPrimePi = 200; Reap[Do[If[MatchQ[Mod[p, 8], 1|2|7], rp = Reduce[x > 0 && y > 0 && p == x^2 - 2*y^2, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; y0 = xy[[All, 2]] // Min // Simplify; Print[{p, xy[[1]]} ]; Sow[y0]]], {p, Prime[Range[maxPrimePi]]}]][[2, 1]] (* Jean-François Alcover, Oct 27 2019 *) CROSSREFS Cf. A002334, A035251. Sequence in context: A208945 A209073 A220901 * A280738 A207375 A173302 Adjacent sequences:  A002332 A002333 A002334 * A002336 A002337 A002338 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 12:10 EDT 2020. Contains 333125 sequences. (Running on oeis4.)