

A035251


Positive numbers of the form x^2  2y^2 with integers x, y.


14



1, 2, 4, 7, 8, 9, 14, 16, 17, 18, 23, 25, 28, 31, 32, 34, 36, 41, 46, 47, 49, 50, 56, 62, 63, 64, 68, 71, 72, 73, 79, 81, 82, 89, 92, 94, 97, 98, 100, 103, 112, 113, 119, 121, 124, 126, 127, 128, 136, 137, 142, 144, 146, 151, 153, 158, 161, 162, 164, 167, 169, 175, 178
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A positive number n is representable in the form x^2  2y^2 iff every prime p == 3 or 5 (mod 8) dividing n occurs to an even power.
Indices of nonzero terms in expansion of Dirichlet series Product_p (1(Kronecker(m,p)+1)*p^(s)+Kronecker(m,p)*p^(2s))^(1) for m=2 (A035185). [amended by Georg Fischer, Sep 03 2020]
Also positive numbers of the form 2x^2  y^2. If x^2  2y^2 = n, 2(x+y)^2  (x+2y)^2 = n.  Franklin T. AdamsWatters, Nov 09 2009
Except 2, prime numbers in this sequence have the form p=8k+1. According to the first comment, prime factors of the forms (8k+3),(8k+5) occur in x^2  2y^2 in even powers. If x^2  2y^2 is a prime number, those powers must be 0. Only factors 8k+1 remain. Example: 137=8*17+1.  Jerzy R Borysowicz, Nov 04 2015
The product of any two terms of the sequence is a term too. A proof follows from the identity: (a^22b^2)(c^22d^2) = (2bd+ac)^2  2(ad+bc)^2. Example: 127*175 has form x^22y^2, with x=9335, y=6600.  Jerzy R Borysowicz, Nov 28 2015
Positive numbers of the form u^2 + 2uv  v^2.  Thomas Ordowski, Feb 17 2017
For integer numbers z, a, k and z^2+a^2>0, k>=0: z^(4k) + a^4 is in A035251 because z^(4k) + a^4 = (z^(2k) + a^2)^2  2(a*z^k)^2. Assume 0^0 = 1. Examples: 3^4 + 1^4 = 82, 3^8+4^4=6817.  Jerzy R Borysowicz, Mar 09 2017
Numbers that are the difference between two legs of a Pythagorean right triangle.  Michael Somos, Apr 02 2017


LINKS



EXAMPLE

The (x,y) pairs, with minimum x, that solve the equation are (1,0), (2,1), (2,0), (3,1), (4,2), (3,0), (4,1), (4,0), (5,2), (6,3), (5,1), (5,0), (6,2), (7,3), (8,4), (6,1), (6,0), (7,2), (8,3), (7,1), (7,0), (10,5), (8,2), ... If the positive number is a perfect square, y=0 yields a trivial solution.  R. J. Mathar, Sep 10 2016


MAPLE

filter:= proc(n) local F;
F:= select(t > t[1] mod 8 = 3 or t[1] mod 8 = 5, ifactors(n)[2]);
map(t > t[2], F)::list(even);
end proc:


MATHEMATICA

Reap[For[n = 1, n < 200, n++, r = Reduce[x^2  2 y^2 == n, {x, y}, Integers]; If[r =!= False, Sow[n]]]][[2, 1]] (* JeanFrançois Alcover, Oct 31 2016 *)


PROG

(PARI) select(x > x, direuler(p=2, 201, 1/(1(kronecker(2, p)*(XX^2))X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020
(PARI) {a(n) = my(m, c); if( n<1, 0, c=0; m=0; while( c<n, m++; if( sum(i=0, sqrtint(m\2), issquare(m+2*i^2)), c++)); m)}; /* Michael Somos, Aug 17 2006 */
(PARI) is(n)=#bnfisintnorm(bnfinit(z^22), n) \\ Ralf Stephan, Oct 14 2013
(Python)
from itertools import count, islice
from sympy import factorint
def A035251_gen(): # generator of terms
return filter(lambda n:all(not((2 < p & 7 < 7) and e & 1) for p, e in factorint(n).items()), count(1))


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Mar 10 2002


STATUS

approved



