Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jul 17 2021 23:40:42
%S -1,-8,1,-90,18,-2,-1344,336,-64,6,-25200,7200,-1800,300,-24,-570240,
%T 178200,-52800,11880,-1728,120,-15135120,5045040,-1681680,458640,
%U -91728,11760,-720,-461260800,161441280,-58705920,18345600,-4515840,806400,-92160,5040,-15878903040,5774146560,-2245501440,777288960,-222082560,49351680,-7931520,816480,-40320
%N Triangle used for the integral of even powers of the sine and cosine functions.
%C This entry originated from a proposal by _Ozgur Cem Birler_ for the integral of the fourth power of sin(x). _Peter Bala_ suggested the use of this triangle to cover all even powers.
%C The signed triangle T(n, k) appears in the formula
%C 2^(2*n)*n!*int(sin^{2*n}x dx) = (2*n)!/n!*x + Sum {k = 1..n} T(n, k)*sin(2*k*x), n >= 1.
%C See the Gradstein - Ryshik reference, 2.513 1., p. 168, (after changing the summation variable k -> n - k).
%C The unsigned triangle T(n, k) appears in the formula 2^(2*n)*n!*int(cos^{2*n}x dx) = (2*n)!/n!*x + Sum {k = 1..n} |T(n, k)|*sin(2*k*x), n >= 1.
%C See the Gradstein - Ryshik reference, 2.513 3., p. 168.
%C For the integral of odd powers of sine and cosine see A254932.
%C Let f_n(x) := Sum_{k=1..n} -T(n, k) * sin(k*x). Then f_n(x) = x + O(x^(2*n+1)). - _Michael Somos_, Jun 07 2019
%D I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
%H Wolfdieter Lang, <a href="/A254933/a254933.pdf">The first ten rows.</a>
%F T(n, k) = (-1)^k*n!/k*binomial(2*n,n - k), 1 <= k <= n.
%e The triangle T(n, k) begins:
%e n\k 1 2 3 4 5 6 ...
%e 1: -1
%e 2: -8 1
%e 3: -90 18 -2
%e 4: -1344 336 -64 6
%e 5: -25200 7200 -1800 300 -24
%e 6: -570240 178200 -52800 11880 -1728 120
%e ...
%e For more rows see the link.
%e n=3: 2^6*3!*int((sin x)^6 dx) = 120*x - 90*sin(2*x) + 18*sin(4*x) - 2*sin(*x),
%e that is: int((sin x)^6 dx) = (5/16)*x -(15/64)*sin(2*x) + (3/64)*sin(4*x) - (1/192)*sin(6*x).
%e 2^6*3!*int((cos x)^6 dx) = 120*x + 90*sin(2*x) + 18*sin(4*x) + 2*sin(6*x),
%e that is: int((cos x)^6 dx) = (5/16)*x + (15/64)*sin(2*x) + (3/64)*sin(4*x) + (1/192)*sin(6*x).
%e As defined in my comment: f_1(x) = sin(x) = x - x^3/6 + O(x^5), f_2(x) = (8*sin(x) - sin(2x)/6 = x - x^5/30 + O(x^7), f_3(x) = (90*sin(x) - 18*sin(2x) + 2*sin(3))/60 = x - x^7/140 + O(x^9). - _Michael Somos_, Jun 07 2019
%t T[n_, k_] := (-1)^k*n!/k*Binomial[2*n, n-k]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 18 2015 *)
%o (PARI) {T(n, k) = if( n<1 || n>k, 0, (-1)^k*n!/k*binomial(2*n, n-k))}; /* _Michael Somos_, Jun 07 2019 */
%Y Cf. A254932 (odd powers).
%K sign,tabl,easy
%O 1,2
%A _Wolfdieter Lang_, Feb 16 2015