login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370889
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*exp(x^2/2)) ).
2
1, 1, 2, 9, 72, 735, 9000, 133035, 2325120, 46631025, 1053108000, 26484495345, 734652737280, 22280390827695, 733335188826240, 26035824337798275, 991872319953715200, 40360728513989909025, 1747119524427614937600, 80166580022376802179225
OFFSET
0,3
FORMULA
a(n) = (n!/(n+1)) * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n+1,n-2*k)/(2^k * k!).
a(n) ~ (1 + 3*LambertW(1/3))^(n + 3/2) * n^(n-1) / (sqrt(1 + LambertW(1/3)) * 3^(3*n/2 + 2) * exp(n) * LambertW(1/3)^(3*(n+1)/2)). - Vaclav Kotesovec, Mar 06 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(1+x*exp(x^2/2)))/x))
(PARI) a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(n+1, n-2*k)/(2^k*k!))/(n+1);
CROSSREFS
Cf. A365283.
Sequence in context: A118789 A258114 A349583 * A367485 A133941 A240956
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2024
STATUS
approved