login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258114
E.g.f.: Sum_{n>=0} x^n * cosh(n*x).
1
1, 1, 2, 9, 72, 665, 6960, 85057, 1199744, 19070865, 336372480, 6522635801, 137996694528, 3163206890857, 78085740701696, 2065239729737745, 58263449436979200, 1746433243580269217, 55428341343200280576, 1856918215298125692073, 65483209810866254643200, 2424691204935999655757241
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1 - x*cosh(x)) / (1 - 2*x*cosh(x) + x^2).
a(n) = Sum_{k=0..n} n!/k! * ((n-k)^k + (-n+k)^k)/2.
a(n) ~ n! * (1-c*cosh(c)) / (2*(cosh(c)+c*(sinh(c)-1)) * c^(n+1)), where c = A030178 = LambertW(1) = 0.56714329040978387299996866... . - Vaclav Kotesovec, May 21 2015
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 72*x^4/4! + 665*x^5/5! +...
where A(x) = 1 + x*cosh(x) + x^2*cosh(2*x) + x^3*cosh(3*x) + x^4*cosh(4*x) +...
MATHEMATICA
CoefficientList[Series[(1-x*Cosh[x])/(1-2*x*Cosh[x]+x^2), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 21 2015 *)
PROG
(PARI) {a(n) = sum(k=0, n, n!/k! * ((n-k)^k + (-n+k)^k)/2)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = sum(m=0, n, x^m*cosh(m*x +x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = local(X=x+x*O(x^n), A=1); A = (1 - x*cosh(X)) / (1 - 2*x*cosh(X) + x^2); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A030178.
Sequence in context: A336606 A121879 A118789 * A349583 A370889 A367485
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 20 2015
STATUS
approved