login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030178 Decimal expansion of LambertW(1): the solution to x*exp(x) = 1. 32
5, 6, 7, 1, 4, 3, 2, 9, 0, 4, 0, 9, 7, 8, 3, 8, 7, 2, 9, 9, 9, 9, 6, 8, 6, 6, 2, 2, 1, 0, 3, 5, 5, 5, 4, 9, 7, 5, 3, 8, 1, 5, 7, 8, 7, 1, 8, 6, 5, 1, 2, 5, 0, 8, 1, 3, 5, 1, 3, 1, 0, 7, 9, 2, 2, 3, 0, 4, 5, 7, 9, 3, 0, 8, 6, 6, 8, 4, 5, 6, 6, 6, 9, 3, 2, 1, 9, 4, 4, 6, 9, 6, 1, 7, 5, 2, 2, 9, 4, 5, 5, 7, 6, 3, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sometimes called the Omega constant.

The first 59 digits form a prime: 5671432904097838729999686622103555497538157871865125081351. - Jonathan Vos Post, Nov 09 2004

LambertW(n)/n, n=1,2,3,4,5,..., can be calculated with the same recurrence as for the numerators in Dirichlet series for logarithms of n using tetration. Convergence is slow for large numbers. See Mathematica program for recurrence. Tetration appears to work also for LambertW(n*(complex number))/n, n=1,2,3,4,5,... See link to mathematics stackexchange. (Conjecture.) - Mats Granvik, Oct 19 2013

Infinite power tower for c = 1/E, i.e., c^c^c^..., where c = 1/A068985. - Stanislav Sykora, Nov 03 2013

Notice the narrow interval exp(-gamma) < w(1) < gamma, with gamma = A001620. - Jean-Fran├žois Alcover, Dec 18 2013

Also the solution to x = -log(x). - Robert G. Wilson v, Feb 22 2014

LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..1999

Daniel Cummerow, Sound of Mathematics, Constants.

Mats Granvik, LambertW(k)/k by tetration for natural numbers

Simon Plouffe, Lambert W(1, 0)

Simon Plouffe, The omega constant or W(1)

Eric Weisstein's World of Mathematics, Omega Constant

Eric Weisstein's World of Mathematics, Lambert W-Function

FORMULA

1/A030797.

EXAMPLE

0.5671432904097838729999686622103555497538157871865125081351310792230457930866...

MAPLE

evalf(LambertW(1));

MATHEMATICA

RealDigits[ ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)

PROG

(PARI) solve(x=0, 1, x*exp(x)-1) \\ Charles R Greathouse IV, Mar 20 2012

(PARI) lambertw(1) \\ Stanislav Sykora, Nov 03 2013

CROSSREFS

Cf. A019474, A059526, A059527.

Sequence in context: A081820 A214681 A019978 * A038458 A267017 A021642

Adjacent sequences:  A030175 A030176 A030177 * A030179 A030180 A030181

KEYWORD

nonn,cons

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 19:13 EST 2016. Contains 278683 sequences.