The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030178 Decimal expansion of LambertW(1): the solution to x*exp(x) = 1. 51
 5, 6, 7, 1, 4, 3, 2, 9, 0, 4, 0, 9, 7, 8, 3, 8, 7, 2, 9, 9, 9, 9, 6, 8, 6, 6, 2, 2, 1, 0, 3, 5, 5, 5, 4, 9, 7, 5, 3, 8, 1, 5, 7, 8, 7, 1, 8, 6, 5, 1, 2, 5, 0, 8, 1, 3, 5, 1, 3, 1, 0, 7, 9, 2, 2, 3, 0, 4, 5, 7, 9, 3, 0, 8, 6, 6, 8, 4, 5, 6, 6, 6, 9, 3, 2, 1, 9, 4, 4, 6, 9, 6, 1, 7, 5, 2, 2, 9, 4, 5, 5, 7, 6, 3, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sometimes called the Omega constant. Infinite power tower for c = 1/E, i.e., c^c^c^..., where c = 1/A068985. - Stanislav Sykora, Nov 03 2013 Notice the narrow interval exp(-gamma) < w(1) < gamma, with gamma = A001620. - Jean-François Alcover, Dec 18 2013 Also the solution to x = -log(x). - Robert G. Wilson v, Feb 22 2014 LINKS G. C. Greubel and Stanislav Sykora, Table of n, a(n) for n = 0..10000 (terms 0..1999 from Stanislav Sykora) blackpenredpen, Finding Omega, featuring Newton's method, video (2018). Daniel Cummerow, Sound of Mathematics, Constants. István Mező, An integral representation for the Lambert W function, arXiv:2012.02480 [math.CA], 2020. Simon Plouffe, Lambert W(1, 0). Simon Plouffe, The omega constant or W(1). Stanislav Sykora, Fixed points of the mappings exp(z) and -exp(z) in C, Stan's Library, Vol. VI, 2016. Eric Weisstein's World of Mathematics, Omega Constant. Eric Weisstein's World of Mathematics, Lambert W-Function. Wikipedia, Omega constant. Wadim Zudilin, Diophantine problems related to the Omega constant, arXiv:2004.11029 [math.NT], 2020. Index entries for transcendental numbers FORMULA Equals 1/A030797. Equals (1/Pi) * Integral_{x=0..Pi} log(1 + sin(x)*exp(x*cot(x))/x) dx (Mező, 2020). - Amiram Eldar, Jul 04 2021 EXAMPLE 0.5671432904097838729999686622103555497538157871865125081351310792230457930866... MAPLE evalf(LambertW(1)); MATHEMATICA RealDigits[ ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *) PROG (PARI) solve(x=0, 1, x*exp(x)-1) \\ Charles R Greathouse IV, Mar 20 2012 (PARI) lambertw(1) \\ Stanislav Sykora, Nov 03 2013 CROSSREFS Cf. A019474, A059526, A059527, A238274. Cf. A276759 (another fixed point of -exp(z)). Sequence in context: A306324 A214681 A019978 * A038458 A284361 A267017 Adjacent sequences: A030175 A030176 A030177 * A030179 A030180 A030181 KEYWORD nonn,cons AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 22:54 EDT 2024. Contains 375018 sequences. (Running on oeis4.)