OFFSET
1,5
COMMENTS
In this sequence, the number 6 exhibits some characteristics of a prime number since we have removed extraneous 2's and 3's from the prime factorizations of numbers.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = n*6^(v_6(n))/(2^(v_2(n))*3^(v_3(n)), where v_k(n) is the k-adic valuation of n, that is v_k(n) gives the largest power of k, a, such that k^a divides n.
Sum_{k=1..n} a(k) ~ (7/24) * n^2. - Amiram Eldar, Dec 25 2023
EXAMPLE
For n=4, v_2(4)=2, v_3(4)=0, and v_6(4)=0, so a(4) = 4*1/(4*1) = 1.
For n=36, v_2(36)=2, v_3(36)=2, and v_6(36)=2, so a(36) = 36*36/(4*9) = 36.
For n=17, a(17) = 17 since 17 has no factors of 6, 2 or 3.
MAPLE
a:= proc(n) local i, m, r; m:=n;
for i from 0 while irem(m, 6, 'r')=0 do m:=r od;
while irem(m, 2, 'r')=0 do m:=r od;
while irem(m, 3, 'r')=0 do m:=r od;
m*6^i
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jul 04 2013
MATHEMATICA
With[{v = IntegerExponent}, a[n_] := n*6^v[n, 6]/2^v[n, 2]/3^v[n, 3]; Array[a, 100]] (* Amiram Eldar, Dec 09 2020 *)
PROG
(Sage)
n=100 #change n for more terms
C=[]
b=6
P = factor(b)
for i in [1..n]:
prod = 1
for j in range(len(P)):
prod = prod * ((P[j][0])^(Integer(i).valuation(P[j][0])))
C.append((b^(Integer(i).valuation(b)) * i) /prod)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Tom Edgar, Jul 25 2012
STATUS
approved