login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214682
Remove 2's that do not contribute to a factor of 4 from the prime factorization of n.
5
1, 1, 3, 4, 5, 3, 7, 4, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 20, 21, 11, 23, 12, 25, 13, 27, 28, 29, 15, 31, 16, 33, 17, 35, 36, 37, 19, 39, 20, 41, 21, 43, 44, 45, 23, 47, 48, 49, 25, 51, 52, 53, 27, 55, 28, 57, 29
OFFSET
1,3
COMMENTS
In this sequence, the number 4 exhibits some characteristics of a prime number since all extraneous 2's have been removed from the prime factorizations of all other numbers.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = (n*4^(v_4(n)))/(2^(v_2(n))) where v_k(n) is the k-adic valuation of n. That is, v_k(n) is the largest power of k, a, such that k^a divides n.
For n odd, a(n)=n since n has no factors of 2 (or 4).
From Peter Munn, Nov 29 2020: (Start)
a(A003159(n)) = n.
a(A036554(n)) = n/2.
a(n) = n/A056832(n) = n/A059895(n, 2) = min(n, A073675(n)).
a(A059897(n, k)) = A059897(a(n), a(k)).
(End)
Multiplicative with a(2^e) = 2^(2*floor(e/2)), and a(p^e) = p^e for odd primes p. - Amiram Eldar, Dec 09 2020
Sum_{k=1..n} a(k) ~ (5/12) * n^2. - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s-1)*(2^s+1)/(2^s+2). - Amiram Eldar, Dec 30 2022
EXAMPLE
For n=8, v_4(8)=1, v_2(8)=3, so a(8)=(8*4^1)/(2^3)=4.
For n=12, v_4(12)=1, v_2(12)=2, so a(12)=(12*4^1)/(2^2)=12.
MATHEMATICA
a[n_] := n/(2^Mod[IntegerExponent[n, 2], 2]); Array[a, 100] (* Amiram Eldar, Dec 09 2020 *)
PROG
(Sage)
C = []
for i in [1..n]:
C.append(i*(4^(Integer(i).valuation(4))/(2^(Integer(i).valuation(2)))
(PARI) a(n)=n>>(valuation(n, 2)%2) \\ Charles R Greathouse IV, Jul 26 2012
(Python)
def A214682(n): return n>>1 if (~n&n-1).bit_length()&1 else n # Chai Wah Wu, Jan 09 2023
CROSSREFS
Range of values: A003159.
Missing values: A036554.
A056832, A059895, A073675 are used in a formula defining this sequence.
A059897 is used to express relationship between terms of this sequence.
Cf. A007814 (v_2(n)), A235127 (v_4(n)).
Sequence in context: A354932 A123901 A349164 * A093395 A176774 A373921
KEYWORD
easy,nonn,mult
AUTHOR
Tyler Ball, Jul 25 2012
STATUS
approved