login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Remove 2's that do not contribute to a factor of 4 from the prime factorization of n.
5

%I #55 Jan 10 2023 01:32:50

%S 1,1,3,4,5,3,7,4,9,5,11,12,13,7,15,16,17,9,19,20,21,11,23,12,25,13,27,

%T 28,29,15,31,16,33,17,35,36,37,19,39,20,41,21,43,44,45,23,47,48,49,25,

%U 51,52,53,27,55,28,57,29

%N Remove 2's that do not contribute to a factor of 4 from the prime factorization of n.

%C In this sequence, the number 4 exhibits some characteristics of a prime number since all extraneous 2's have been removed from the prime factorizations of all other numbers.

%H Charles R Greathouse IV, <a href="/A214682/b214682.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (n*4^(v_4(n)))/(2^(v_2(n))) where v_k(n) is the k-adic valuation of n. That is, v_k(n) is the largest power of k, a, such that k^a divides n.

%F For n odd, a(n)=n since n has no factors of 2 (or 4).

%F From _Peter Munn_, Nov 29 2020: (Start)

%F a(A003159(n)) = n.

%F a(A036554(n)) = n/2.

%F a(n) = n/A056832(n) = n/A059895(n, 2) = min(n, A073675(n)).

%F a(A059897(n, k)) = A059897(a(n), a(k)).

%F (End)

%F Multiplicative with a(2^e) = 2^(2*floor(e/2)), and a(p^e) = p^e for odd primes p. - _Amiram Eldar_, Dec 09 2020

%F Sum_{k=1..n} a(k) ~ (5/12) * n^2. - _Amiram Eldar_, Nov 10 2022

%F Dirichlet g.f.: zeta(s-1)*(2^s+1)/(2^s+2). - _Amiram Eldar_, Dec 30 2022

%e For n=8, v_4(8)=1, v_2(8)=3, so a(8)=(8*4^1)/(2^3)=4.

%e For n=12, v_4(12)=1, v_2(12)=2, so a(12)=(12*4^1)/(2^2)=12.

%t a[n_] := n/(2^Mod[IntegerExponent[n, 2], 2]); Array[a, 100] (* _Amiram Eldar_, Dec 09 2020 *)

%o (Sage)

%o C = []

%o for i in [1..n]:

%o C.append(i*(4^(Integer(i).valuation(4))/(2^(Integer(i).valuation(2)))

%o (PARI) a(n)=n>>(valuation(n,2)%2) \\ _Charles R Greathouse IV_, Jul 26 2012

%o (Python)

%o def A214682(n): return n>>1 if (~n&n-1).bit_length()&1 else n # _Chai Wah Wu_, Jan 09 2023

%Y Cf. A214681, A214685.

%Y Range of values: A003159.

%Y Missing values: A036554.

%Y A056832, A059895, A073675 are used in a formula defining this sequence.

%Y A059897 is used to express relationship between terms of this sequence.

%Y Cf. A007814 (v_2(n)), A235127 (v_4(n)).

%K easy,nonn,mult

%O 1,3

%A _Tyler Ball_, Jul 25 2012