|
|
A059527
|
|
Decimal expansion of imaginary part of solution to z = log z.
|
|
9
|
|
|
1, 3, 3, 7, 2, 3, 5, 7, 0, 1, 4, 3, 0, 6, 8, 9, 4, 0, 8, 9, 0, 1, 1, 6, 2, 1, 4, 3, 1, 9, 3, 7, 1, 0, 6, 1, 2, 5, 3, 9, 5, 0, 2, 1, 3, 8, 4, 6, 0, 5, 1, 2, 4, 1, 8, 8, 7, 6, 3, 1, 2, 7, 8, 1, 9, 1, 4, 3, 5, 0, 5, 3, 1, 3, 6, 1, 2, 0, 4, 9, 8, 8, 4, 1, 8, 8, 8, 1, 3, 2, 3, 4, 3, 8, 7, 9, 4, 0, 1, 5, 6, 1, 0, 3, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Repeatedly take logs, starting from any number not equal to 0, 1, e, e^e, e^(e^e), etc. and you will converge to 0.31813150... + 1.33723570...*I.
|
|
LINKS
|
|
|
EXAMPLE
|
z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i.
|
|
MATHEMATICA
|
RealDigits[ Im[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]]
|
|
PROG
|
(PARI) z=I; for(k=1, 16000, z=log(z)); imag(z) \\ Using realprecision \p 2010. - Stanislav Sykora, Jun 07 2015
(PARI) z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); imag(z) \\ Jeremy Tan, Sep 23 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|