login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059527 Decimal expansion of imaginary part of solution to z = log z. 9
1, 3, 3, 7, 2, 3, 5, 7, 0, 1, 4, 3, 0, 6, 8, 9, 4, 0, 8, 9, 0, 1, 1, 6, 2, 1, 4, 3, 1, 9, 3, 7, 1, 0, 6, 1, 2, 5, 3, 9, 5, 0, 2, 1, 3, 8, 4, 6, 0, 5, 1, 2, 4, 1, 8, 8, 7, 6, 3, 1, 2, 7, 8, 1, 9, 1, 4, 3, 5, 0, 5, 3, 1, 3, 6, 1, 2, 0, 4, 9, 8, 8, 4, 1, 8, 8, 8, 1, 3, 2, 3, 4, 3, 8, 7, 9, 4, 0, 1, 5, 6, 1, 0, 3, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Repeatedly take logs, starting from any number not equal to 0, 1, e, e^e, e^(e^e), etc. and you will converge to 0.31813150... + 1.33723570...*I.
LINKS
Wolfram Research, FixedPoint
EXAMPLE
z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i.
MATHEMATICA
RealDigits[ Im[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]]
RealDigits[ N[ Im[ ProductLog[-1]], 105]][[1]] (* Jean-François Alcover, Feb 01 2012 *)
PROG
(PARI) z=I; for(k=1, 16000, z=log(z)); imag(z) \\ Using realprecision \p 2010. - Stanislav Sykora, Jun 07 2015
(PARI) z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); imag(z) \\ Jeremy Tan, Sep 23 2017
CROSSREFS
Real part is A059526.
Cf. A030178.
Sequence in context: A359407 A358191 A235162 * A215235 A101457 A280753
KEYWORD
cons,nonn,nice
AUTHOR
Fabian Rothelius, Jan 21 2001
EXTENSIONS
More terms from Vladeta Jovovic, Feb 26 2001
Edited and extended by Robert G. Wilson v, Aug 22 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 07:46 EDT 2024. Contains 375880 sequences. (Running on oeis4.)