login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059527
Decimal expansion of imaginary part of solution to z = log z.
9
1, 3, 3, 7, 2, 3, 5, 7, 0, 1, 4, 3, 0, 6, 8, 9, 4, 0, 8, 9, 0, 1, 1, 6, 2, 1, 4, 3, 1, 9, 3, 7, 1, 0, 6, 1, 2, 5, 3, 9, 5, 0, 2, 1, 3, 8, 4, 6, 0, 5, 1, 2, 4, 1, 8, 8, 7, 6, 3, 1, 2, 7, 8, 1, 9, 1, 4, 3, 5, 0, 5, 3, 1, 3, 6, 1, 2, 0, 4, 9, 8, 8, 4, 1, 8, 8, 8, 1, 3, 2, 3, 4, 3, 8, 7, 9, 4, 0, 1, 5, 6, 1, 0, 3, 8
OFFSET
1,2
COMMENTS
Repeatedly take logs, starting from any number not equal to 0, 1, e, e^e, e^(e^e), etc. and you will converge to 0.31813150... + 1.33723570...*I.
LINKS
Wolfram Research, FixedPoint
EXAMPLE
z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i.
MATHEMATICA
RealDigits[ Im[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]]
RealDigits[ N[ Im[ ProductLog[-1]], 105]][[1]] (* Jean-François Alcover, Feb 01 2012 *)
PROG
(PARI) z=I; for(k=1, 16000, z=log(z)); imag(z) \\ Using realprecision \p 2010. - Stanislav Sykora, Jun 07 2015
(PARI) z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); imag(z) \\ Jeremy Tan, Sep 23 2017
CROSSREFS
Real part is A059526.
Cf. A030178.
Sequence in context: A359407 A358191 A235162 * A215235 A101457 A280753
KEYWORD
cons,nonn,nice
AUTHOR
Fabian Rothelius, Jan 21 2001
EXTENSIONS
More terms from Vladeta Jovovic, Feb 26 2001
Edited and extended by Robert G. Wilson v, Aug 22 2002
STATUS
approved