login
A059530
Triangle T(n,k) of k-block T_0-tricoverings of an n-set, n >= 3, k = 0..2*n.
7
0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 39, 89, 43, 3, 0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12, 0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70, 0, 0, 0, 0, 0, 5040, 536760, 6052730, 20660055, 29432319, 19826737, 6481160, 964495, 52430
OFFSET
3,6
COMMENTS
A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
LINKS
FORMULA
E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.
T(n,k) = 0 for n > binomial(k, 3). - Andrew Howroyd, Jan 30 2020
EXAMPLE
Triangle begins:
[0, 0, 0, 0, 1, 3, 1],
[0, 0, 0, 0, 1, 39, 89, 43, 3],
[0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12],
[0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70],
...
There are 5 = 1 + 3 + 1 T_0-tricoverings of a 3-set and 175 = 1 + 39 + 89 + 43 + 3 T_0-tricoverings of a 4-set, cf. A060070.
PROG
(PARI) \\ gets k-th column as vector
C(k)=if(k<4, [], Vecrev(serlaplace(polcoef(exp(-x + x^2/2 + x^3*y/3 + O(x*x^k))*sum(i=0, 2*k, (1+y)^binomial(i, 3)*exp(-x^2*(1+y)^i/2 + O(x*x^k))*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
(PARI)
T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]]); }
{ my(A=T(8)); for(n=3, matsize(A)[1], print(concat([0], A[n, 1..2*n]))) } \\ Andrew Howroyd, Jan 30 2020
CROSSREFS
Column sums are A060069.
Row sums are A060070.
Sequence in context: A078529 A180017 A243827 * A193525 A049828 A342557
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Feb 22 2001
STATUS
approved