OFFSET
2,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
LINKS
Alois P. Heinz, Rows n = 2..60, flattened
L. Comtet, Birecouvrements et birevêtements d’un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
FORMULA
E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
T(n, k) = Sum{j=0..n} Stirling2(n, j) * A060052(j, k). - David Pasino, Sep 22 2016
EXAMPLE
T(2,3) = 1: 1|12|2.
T(3,3) = 4: 1|123|23, 12|13|23, 12|123|3, 123|13|2.
T(3,4) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3.
Triangle T(n,k) begins:
: 1;
: 4, 4;
: 13, 39, 25, 3;
: 40, 280, 472, 256, 40;
: 121, 1815, 6185, 7255, 3306, 535, 15;
: 364, 11284, 70700, 149660, 131876, 51640, 8456, 420;
: 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105;
...
MATHEMATICA
nmax = 8; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[ Series[ egf , {y, 0, imax}], y]*Range[0, imax]!; row[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3]; Table[ row[n], {n, 2, nmax}] // Flatten (* Jean-François Alcover, Sep 21 2012 *)
PROG
(PARI) \ps 22;
s = 8; pv = vector(s); for(n=1, s, pv[n]=round(polcoeff(f(x, y), n, y)*n!));
for(n=1, s, for(m=3, poldegree(pv[n], x), print1(polcoeff(pv[n], m), ", "))) \\ Gerald McGarvey, Dec 03 2009
KEYWORD
tabf,nonn,nice
AUTHOR
N. J. A. Sloane, Feb 01 2001
EXTENSIONS
More terms and additional comments from Vladeta Jovovic, Feb 14 2001
a(37) corrected by Gerald McGarvey, Dec 03 2009
STATUS
approved