login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219454
Number of n X 2 arrays of the minimum value of corresponding elements and their horizontal, vertical, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 n X 2 array.
2
4, 4, 13, 26, 57, 116, 231, 450, 859, 1604, 2928, 5228, 9139, 15653, 26282, 43275, 69900, 110803, 172457, 263715, 396482, 586522, 854417, 1226696, 1737153, 2428374, 3353494, 4578206, 6183045, 8265971, 10945276, 14362841, 18687770, 24120429
OFFSET
1,1
COMMENTS
Column 2 of A219460.
LINKS
FORMULA
Empirical: a(n) = (1/40320)*n^8 - (1/2016)*n^7 + (7/2880)*n^6 + (53/720)*n^5 - (6313/5760)*n^4 + (1961/288)*n^3 - (170417/10080)*n^2 + (3393/280)*n + 13 for n>5.
Conjectures from Colin Barker, Mar 11 2018: (Start)
G.f.: x*(4 - 32*x + 121*x^2 - 283*x^3 + 459*x^4 - 553*x^5 + 525*x^6 - 411*x^7 + 271*x^8 - 149*x^9 + 71*x^10 - 29*x^11 + 8*x^12 - x^13) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>14.
(End)
EXAMPLE
Some solutions for n=3:
..1..1....0..0....1..1....2..2....0..0....1..1....2..2....2..2....2..2....0..0
..1..1....0..0....1..1....0..0....0..0....1..1....1..1....2..2....2..2....0..0
..1..1....0..0....3..3....0..0....1..1....2..2....1..1....3..3....2..2....2..2
CROSSREFS
Cf. A219460.
Sequence in context: A099924 A147824 A019081 * A059443 A241250 A097335
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 20 2012
STATUS
approved