The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099924 Self-convolution of Lucas numbers. 3
 4, 4, 13, 22, 45, 82, 152, 274, 491, 870, 1531, 2676, 4652, 8048, 13865, 23798, 40713, 69446, 118144, 200510, 339559, 573894, 968183, 1630632, 2742100, 4604572, 7721797, 12933334, 21637221, 36159610, 60367976, 100687786 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 57. LINKS Michael De Vlieger, Table of n, a(n) for n = 0..4767 É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6. Sergio Falcon, Half self-convolution of the k-Fibonacci sequence, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106. Tamás Szakács, Convolution of second order linear recursive sequences. II. Commun. Math. 25, No. 2, 137-148 (2017). See remark 4. Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1). FORMULA a(n) = (n+1)*L(n) + 2F(n+1) = Sum_{k=0..n} L(k)*L(n-k). G.f.: (2-x)^2/(1-x-x^2)^2, corrected Aug 23 2022 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), a(0)=4, a(1)=4, a(2)=13, a(3)=22. - Harvey P. Dale, Mar 06 2012 a(n) = 2*A099920(n+1)-A099920(n). - R. J. Mathar, Aug 23 2022 MATHEMATICA Table[Sum[LucasL[k]LucasL[n-k], {k, 0, n}], {n, 0, 40}] (* or *) LinearRecurrence[ {2, 1, -2, -1}, {4, 4, 13, 22}, 40] (* Harvey P. Dale, Mar 06 2012 *) CROSSREFS Cf. A001629, A000032. Bisection: A203573 (even), 2*A203574 (odd). Sequence in context: A214779 A323920 A005301 * A147824 A019081 A219454 Adjacent sequences: A099921 A099922 A099923 * A099925 A099926 A099927 KEYWORD nonn,easy AUTHOR Ralf Stephan, Nov 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 21:00 EST 2022. Contains 358648 sequences. (Running on oeis4.)