OFFSET
1,1
COMMENTS
a(n) has a symmetric representation as shown in the example.
EXAMPLE
a(1) = sigma(1) + sigma(2) = 1 + 3 = 4.
a(2) = sigma(3) = 4.
a(3) = sigma(4) + sigma(5) = 7 + 6 = 13.
a(4) = sigma(6) + sigma(7) = 12 + 8 = 20.
a(5) = sigma(8) + sigma(9) + sigma(10) + sigma(11) = 15 + 13 + 18 + 12 = 58.
a(6) = sigma(12) + sigma(13) = 28 + 14 = 42.
...
a(40) = sigma(168) + sigma(169) + sigma(170) + sigma(171) + sigma(172) + sigma(173) = 480 + 183 + 324 + 260 + 308 + 174 = 1729.
Illustration of initial terms using the Dyck paths described in A237593:
.
. n prime(n) a(n) Diagram
. _ _ _ _ _ _ _ _ _ _ _ _ _
. | | | | | | |
. 1 2 4 |_ _|_| | | | |
. 2 3 4 |_ _| _ _| | | |
. | | _ _| | |
. 3 5 13 |_ _ _| _| | |
. | | _ _ _| |
. 4 7 20 |_ _ _ _| _| _ _ _|
. | _| |
. | | _|
. | | _ _|
. 5 11 58 |_ _ _ _ _ _| |
. | |
. 6 13 42 |_ _ _ _ _ _ _|
.
The diagram of a(40) = 1729 is too large to include.
MATHEMATICA
{Total@ DivisorSigma[1, Range[2]]}~Join~Array[Total@ DivisorSigma[1, Range[Prime[# - 1] + 1, Prime[#]]] &, 56, 2] (* Michael De Vlieger, Nov 29 2022 *)
PROG
(PARI) A358683(n) = sum(k=if(1==n, 1, 1+prime(n-1)), prime(n), sigma(k)); \\ Antti Karttunen, Nov 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Nov 26 2022
STATUS
approved