OFFSET
1,1
COMMENTS
Limit_{n->oo} a(n)/prime(n)^2 = zeta(2)/2 = Pi^2/12 = A072691 = 0.82246703342.... For example, at n = 2*10^6, the ratio converges to 0.822467033... (+-2 in the last digit with increments on n of +100). If the ratio is calculated with a nonprime for the upper summation limit then the ratio runs slightly larger and converges slower. See formula section of A024916 for the general case. - Richard R. Forberg, Jan 04 2015
This is a subsequence of A024916 therefore a(n) also has a symmetric representation. For more information see A236104, A237593. - Omar E. Pol, Jan 05 2015
FORMULA
MATHEMATICA
a244583[n_] := Sum[DivisorSigma[1, i], {i, #}] & /@ Prime[Range@n]; a244583[44] (* Michael De Vlieger, Jan 06 2015 *)
PROG
(PARI) a(n) = sum(i=1, prime(n), sigma(i)); \\ Michel Marcus, Sep 29 2014
(Python)
from math import isqrt
from sympy import prime
def A244583(n): return -(s:=isqrt(p:=prime(n)))**2*(s+1) + sum((q:=p//k)*((k<<1)+q+1) for k in range(1, s+1))>>1 # Chai Wah Wu, Oct 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 30 2014
EXTENSIONS
More terms from Michel Marcus, Sep 29 2014
STATUS
approved