This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061256 Euler transform of sigma(n), cf. A000203. 40
 1, 1, 4, 8, 21, 39, 92, 170, 360, 667, 1316, 2393, 4541, 8100, 14824, 26071, 46422, 80314, 139978, 238641, 408201, 686799, 1156062, 1920992, 3189144, 5238848, 8589850, 13963467, 22641585, 36447544, 58507590, 93334008, 148449417, 234829969, 370345918 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is also the number of ordered triples of permutations f, g, h in Symm(n) which all commute, divided by n!. This was conjectured by Franklin T. Adams-Watters, Jan 16 2006, and proved by J. R. Britnell in 2012. According to a message on a blog page by "Allan" (see Secret Blogging Seminar link) it appears that a(n) = number of conjugacy classes of commutative ordered pairs in Symm(n). John McKay (email to N. J. A. Sloane, Apr 23 2013) observes that A061256 and A006908 coincide for a surprising number of terms, and asks for an explanation. - N. J. A. Sloane, May 19 2013 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe) J. R. Britnell, A formal identity involving commuting triples of permutations, arXiv:1203.5079 [math.CO], 2012. J. R. Britnell, A formal identity involving commuting triples of permutations, Preprint 2012. - N. J. A. Sloane, Jun 13 2012 J. R. Britnell, A formal identity involving commuting triples of permutations, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013. E. Marberg, How to compute the Frobenius-Schur indicator of a unipotent character of a finite Coxeter system, arXiv preprint arXiv:1202.1311 [math.RT], 2012. -  N. J. A. Sloane, Jun 10 2012 Secret Blogging Seminar, A peculiar numerical coincidence. N. J. A. Sloane, Transforms Tad White, Counting Free Abelian Actions, arXiv:1304.2830 [math.CO], 2013. FORMULA a(n) = A072169(n) / n!. G.f.: Product_{k=1..infinity} (1 - x^k)^(-sigma(k)). a(n)=1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k)=Sum_{d|k} d*sigma(d), cf. A001001. G.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x^n)^2 /n ). [Paul D. Hanna, Mar 28 2009] G.f.: exp( Sum_{n>=1} sigma_2(n)*x^n/(1-x^n)/n ). [Vladeta Jovovic, Mar 28 2009] G.f.: prod(n>=1, E(x^n)^n ) where E(x) = prod(k>=1, 1-x^k). [Joerg Arndt, Apr 12 2013] a(n) ~ exp((3*Pi)^(2/3) * Zeta(3)^(1/3) * n^(2/3)/2 - Pi^(4/3) * n^(1/3) / (4 * 3^(2/3) * Zeta(3)^(1/3)) - 1/24 - Pi^2/(288*Zeta(3))) * A^(1/2) * Zeta(3)^(11/72) / (2^(11/24) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 23 2018 EXAMPLE 1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 92*x^6 + 170*x^7 + 360*x^8 + ... MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(       d*sigma(d), d=divisors(j)) *a(n-j), j=1..n)/n)     end: seq(a(n), n=0..40);  # Alois P. Heinz, Jun 08 2017 MATHEMATICA nn = 30; b = Table[DivisorSigma[1, n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 18 2012 *) nmax = 40; CoefficientList[Series[Product[1/QPochhammer[x^k]^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *) PROG (PARI) N=66; x='x+O('x^N); gf=1/prod(j=1, N, eta(x^j)^j); Vec(gf) /* Joerg Arndt, May 03 2008 */ (PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, sigma(m)*x^m/(1-x^m+x*O(x^n))^2/m)), n))} /* Paul D. Hanna, Mar 28 2009 */ CROSSREFS Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), this sequence (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9). Cf. A000203, A001001, A001970, A053529, A061255, A061257, A006908, A192065. Sequence in context: A233401 A006908 A079860 * A180608 A244583 A261031 Adjacent sequences:  A061253 A061254 A061255 * A061257 A061258 A061259 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Apr 21 2001 EXTENSIONS Entry revised by N. J. A. Sloane, Jun 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 22:17 EDT 2019. Contains 323576 sequences. (Running on oeis4.)