login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288391
Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_3(k)).
13
1, 1, 10, 38, 156, 534, 2014, 6796, 23312, 76165, 247234, 780343, 2435903, 7453859, 22538336, 67130594, 197666509, 574876417, 1654464954, 4711217687, 13288453688, 37133349758, 102873771662, 282630567325, 770410193747, 2084205092693, 5598070811010
OFFSET
0,3
LINKS
FORMULA
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A027848(k)*a(n-k) for n > 0.
a(n) ~ exp((5*Pi)^(4/5) * Zeta(5)^(1/5) * n^(4/5) / (2^(8/5) * 3^(1/5)) - Zeta'(-3)/2) * Zeta(5)^(121/1200) / ((24*Pi)^(121/1200) * 5^(721/1200) * n^(721/1200)). - Vaclav Kotesovec, Mar 23 2018
G.f.: exp(Sum_{k>=1} sigma_4(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*sigma[3](d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 08 2017
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *)
PROG
(PARI) m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^sigma(k, 3))) \\ G. C. Greubel, Oct 30 2018
(Magma) m:=40; R<q>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-q^k)^DivisorSigma(3, k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
CROSSREFS
Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), this sequence (m=3).
Sequence in context: A064603 A164298 A050479 * A220206 A218081 A219823
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 08 2017
STATUS
approved