login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233401
Numbers k such that k^3 - b2 is a triangular number (A000217), where b2 is the largest square less than k^3.
2
1, 4, 8, 21, 37, 40, 56, 112, 113, 204, 280, 445, 481, 560, 688, 709, 1933, 1945, 3601, 3805, 3861, 4156, 4333, 4365, 7096, 8408, 8516, 11064, 12688, 13609, 13945, 16501, 17080, 18901, 21464, 23125, 27244, 27364, 28141, 45228, 45549, 58321, 60061, 66245, 70585, 78688
OFFSET
1,2
COMMENTS
The cubes k^3 begin: 1, 64, 512, 9261, 50653, 64000, 175616, 1404928, ...
The squares b2 begin: 0, 49, 484, 9216, 50625, 63504, 175561, 1404225, ...
Their square roots are 0, 7, 22, 96, 225, 252, 419, 1185, 1201, 2913, 4685, 9387, ...
PROG
(Python)
from math import isqrt
def isTriangular(a):
a+=a
sr = isqrt(a)
return (a==sr*(sr+1))
for n in range(1, 79999):
n3 = n*n*n
b = isqrt(n3)
if b*b==n3: b-=1
if isTriangular(n3-b*b): print(n, end=', ')
(PARI) f(k) = if (issquare(k), sqrtint(k-1)^2, sqrtint(k)^2); \\ adapted from A048760
isok(k) = my(b2 = sqrtint(k^3-1)^2); (k^3-b2) && ispolygonal(k^3-b2, 3); \\ Michel Marcus, Jan 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Dec 09 2013
STATUS
approved