The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037020 Numbers whose sum of proper (or aliquot) divisors is a prime. 19
 4, 8, 21, 27, 32, 35, 39, 50, 55, 57, 63, 65, 77, 85, 98, 111, 115, 125, 128, 129, 155, 161, 171, 175, 185, 187, 189, 201, 203, 205, 209, 221, 235, 237, 242, 245, 265, 275, 279, 291, 299, 305, 309, 319, 323, 324, 325, 327, 335, 338, 341, 365, 371, 377, 381 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Assuming the Goldbach conjecture, it is easy to show that all primes, except 2 and 5, are the sum of the proper divisors of some number. - T. D. Noe, Nov 29 2006 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Paul Pollack, Some arithmetic properties of the sum of proper divisors and the sum of prime divisors, Illinois J. Math. 58:1 (2014), pp. 125-147. FORMULA A001065(a(n)) is in A000040. Pollack proves that a(n) >> n log n. - Charles R Greathouse IV, Jun 28 2021 EXAMPLE The aliquot divisors of 27 are 1, 3, and 9, whose sum is 13, a prime, so 27 is a term. MATHEMATICA Select[Range[400], PrimeQ[DivisorSigma[1, #]-#]&] (* Harvey P. Dale, May 09 2011 *) PROG (Haskell) a037020 n = a037020_list !! (n-1) a037020_list = filter ((== 1) . a010051' . a001065) [1..] -- Reinhard Zumkeller, Nov 01 2015, Sep 15 2011 (PARI) isok(n) = isprime(sigma(n) - n); \\ Michel Marcus, Nov 01 2016 (Magma) [n: n in [2..500] | IsPrime(SumOfDivisors(n)-n)]; // Vincenzo Librandi, Nov 01 2016 CROSSREFS Cf. A001065, A053868, A053869, A010051. Sequence in context: A102559 A308233 A371001 * A094878 A233401 A006908 Adjacent sequences: A037017 A037018 A037019 * A037021 A037022 A037023 KEYWORD nonn,easy,nice AUTHOR Felice Russo, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 08:50 EDT 2024. Contains 372926 sequences. (Running on oeis4.)