|
|
A233399
|
|
A "turtle transform" of the primes p=A000040: coordinates (x,y)=(a(2n),a(2n+1)) of a walk on the complex plane, where at step n the cursor turns by arg(i^p(n)), then moves p(n) units ahead.
|
|
5
|
|
|
0, 0, -2, 0, -2, 3, -7, 3, -7, 10, 4, 10, 4, 23, -13, 23, -13, 42, 10, 42, 10, 71, 41, 71, 41, 108, 0, 108, 0, 151, 47, 151, 47, 204, 106, 204, 106, 265, 173, 265, 173, 194, 246, 194, 246, 115, 163, 115, 163, 26, 260, 26, 260, 127, 363, 127, 363, 20
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..57.
M. F. Hasler, Turtle(prime) walk after 25 steps.
M. F. Hasler, Turtle(prime) walk after 60 steps.
M. F. Hasler, Turtle(prime) walk after the 99th step, drawn in red.
|
|
EXAMPLE
|
The cursor starts for n=0 at the origin (a(0)=a(1)=0), facing East (= direction of the x-axis). At step 1, prime(1)=2 leads to a turn left by 2*90 degrees (now facing West), then a step of two units into the new direction, to x+iy = -2, thus a(2)=-2, a(3)=0. Prime(2)=3 leads to a turn left by 3*90 degrees, now facing North, and a step of 3 units in that direction, to x+iy = -2+3i, therefore a(4)=-2, a(5)=3.
|
|
MATHEMATICA
|
Turtle[v_] := Module[{p, L, d}, p=0; L={p}; d=1; For[i=1, i <= Length[v], i++, d *= I^v[[i]]; AppendTo[L, p += d*v[[i]] ] ]; L]; {Re[#], Im[#]}& /@ Turtle[Prime /@ Range[60]] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from PARI *)
|
|
PROG
|
(PARI) Turtle(v, p=0, L=[p], d=1)=for(i=1, #v, d*=I^v[i]; L=concat(L, p+=d*v[i])); L
(PARI) a(nMax)=concat(apply(z->[real(z), imag(z)], Turtle(primes(nMax))))
|
|
CROSSREFS
|
Sequence in context: A361651 A222753 A274568 * A226432 A072514 A071547
Adjacent sequences: A233396 A233397 A233398 * A233400 A233401 A233402
|
|
KEYWORD
|
sign,walk
|
|
AUTHOR
|
M. F. Hasler, Dec 08 2013
|
|
STATUS
|
approved
|
|
|
|