|
|
A233400
|
|
Number n such that a2 - n^3 is a triangular number (A000217), where a2 is the least square above n^3.
|
|
2
|
|
|
0, 1, 2, 9, 12, 107, 109, 120, 244, 337, 381, 407, 565, 592, 937, 1209, 1224, 1341, 1717, 2032, 2402, 3280, 4957, 5149, 5265, 5644, 7065, 7240, 8181, 8820, 9712, 10732, 11901, 15059, 18300, 19120, 20436, 22672, 24516, 25139, 28044, 28550, 36145, 38221, 66201, 72335, 77100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
The sequence of cubes begins: 0, 1, 8, 729, 1728, 1225043, 1295029, 1728000, 14526784, 38272753, 55306341, ...
The sequence of squares begins: 1, 4, 9, 784, 1764, 1225449, 1295044, 1729225, 14531344, 38278969, 55308969, ...
The sequence of roots of these squares begins: 1, 2, 3, 28, 42, 1107, 1138, 1315, 3812, 6187, 7437, 8211, 13430, 14404, 28682, ...
|
|
LINKS
|
Table of n, a(n) for n=1..47.
|
|
PROG
|
(Python)
def isqrt(a):
sr = 1L << (long.bit_length(long(a)) >> 1)
while a < sr*sr: sr>>=1
b = sr>>1
while b:
s = sr+b
if a >= s*s: sr = s
b>>=1
return sr
def isTriangular(a):
a+=a
sr = isqrt(a)
return (a==sr*(sr+1))
for n in range(77777):
n3 = n*n*n
a = isqrt(n3)+1
if isTriangular(a*a-n3): print str(n)+', ',
|
|
CROSSREFS
|
Cf. A000217, A000290, A000578, A233401.
Sequence in context: A125019 A259984 A225548 * A234945 A357729 A271646
Adjacent sequences: A233397 A233398 A233399 * A233401 A233402 A233403
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alex Ratushnyak, Dec 09 2013
|
|
STATUS
|
approved
|
|
|
|