login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357729
a(n) = Sum_{k=0..floor(n/2)} (-n)^k * Stirling2(n,2*k).
3
1, 0, -2, -9, -12, 175, 1938, 9506, -24248, -1065663, -12021610, -56195425, 677072220, 19979234080, 251733387514, 1135594212255, -29317384858352, -901607623649489, -13233854770928514, -68574233644270566, 2258648937829442660, 81748108921355457777
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = n! * [x^n] cos( sqrt(n) * (exp(x) - 1) ).
a(n) = ( Bell_n(sqrt(n) * i) + Bell_n(-sqrt(n) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit.
PROG
(PARI) a(n) = sum(k=0, n\2, (-n)^k*stirling(n, 2*k, 2));
(PARI) a(n) = round(n!*polcoef(cos(sqrt(n)*(exp(x+x*O(x^n))-1)), n));
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, sqrt(n)*I)+Bell_poly(n, -sqrt(n)*I)))/2;
CROSSREFS
Main diagonal of A357728.
Sequence in context: A225548 A233400 A234945 * A271646 A024976 A171234
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 11 2022
STATUS
approved